
Electrostatic field of an uniformly charged sphere, force acting on the alpha 
particles and the electrostatic potential energy of the alpha particles in the 

Rutherford experiment 
 

When Rutherford and co-workers (Geiger and Marsden) started their experiments the Thomson 
model of the atom was widely accepted. In this model the atoms consist of a heavy, positively 
charged sphere of radius R (“pudding”) and the small, light, negatively charged electrons sit inside, 
making the whole electrically neutral (pudding model).  

Rutherford studied the scattering of high energy alpha particles on a thin gold foil. When the 
positively charge alpha-particle approaches to a Thomson atom, the very light electrons will be 
displaced because of the electrostatic interaction – even they can be completely pulled away (the 
atom gets ionized). However, the electrons cannot influence the trajectory of the alpha particle, since 
their mass is really small, about 8000 times smaller then the alpha particle’s mass. Therefore the 
trajectory of the alpha particle can be modified only by the positively charged, heavy part of the 
Thomson atom. Then, it is sufficient to analyse the interaction between a uniformly charged sphere 
with radius R, and a point like, positively charged particle. It is important to note that in this calculation 
only electrostatic interaction is considered. This means that the „pudding” is smooth; the alpha particle 
can even penetrate into it, if the electrostatic forces allow!  
 

A charged sphere creates E(r) electrostatic field around itself. The force acting on a q charge in 
this field is: F(r) = q·E(r).   

In the following we determine the E(r) field, which is a vector field (bold face).  
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integration should be done on a closed surface, and Q is the total electric charge inside this closed 
surface.  

Because of the spherical symmetry the absolute value of the field depends only on the absolute 
value of the distance from the centre of the sphere (denoted by r), and the direction of the field vectors 

show outwards from the centre (if the sphere is positively charged). Therefore:     FrE dd  FrE . 

This way the integral can easily be calculated for a sphere with radius r:  

      24dd rrEFrE   FrE .  

After having calculated the integral on the left hand side of the Gauss-theorem, let us consider 
the Q charge on the right hand side. This is the total charge inside the closed surface. Two cases 
should be distinguished:  
 

a) If Rr  , i.e. the integration sphere completely contains the „atom”. In this case the charge 
will always be the same, independently of r: the total positive charge of the „pudding” Ze (here 
Z is the atomic number, e is the elementary charge).  
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q = 2e, we get the well-known Coulomb force law:  
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b) The situation is different, if Rr  , i.e. we integrate over a sphere which is „inside” the 
pudding-atom! In this case only a fraction of the total charge is inside the integrating sphere, 
therefore on the right hand side of the Gauss-theorem a smaller fraction of the total charge 
should appear. If the „pudding” is uniformly charged, the charge inside the sphere will be 
proportional to the volume of the sphere. Therefore we should write to the right hand side of 



the Gauss-theorem the following charge: 
3

3

3

4
3

4

R

r
ZeQ





 .  The Gauss-theorem becomes: 

 
3

3

0

24
R

rZe
rrE 


 . Finally, we get for the electrostatic field strength: 

  r
R

Ze
rE 




3
04

1
.  

The force acting on the alpha particle becomes:   r
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Notice, that the force vanishes at  r = 0, in the centre. If you think about it, it makes sense: because of 
the complete spherical symmetry the resulting electrostatic force should be zero in the centre.  
 
Summarized: the force acting on an alpha particle at an r distance from the centre of the sphere:  
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This is shown in the following picture (for a gold atom sphere with R = 50 fm), and this can be seen 
also in the „Force” window of the simulation.  
 

 
 

Knowing the force law the interaction potential can easily be deduced.  

In the conservative electrostatic field the force is the negative gradient of the potential: 

   rrE Ugrad . Since we have spherical symmetry, everything depends only on the absolute 
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simple integration, if E(r) is known.  



We fix the 0 value of the potential in the infinity, therefore    
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law is different outside and inside the „pudding”, this integral is also composed of two parts. If Rr  , 
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If Rr  , then we should continue the integration „inward” from r=R :  
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Finally we get:  
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The potential energy of the alpha particle:    rUerE pot  2  

This is shown in the following picture (for a gold atom sphere with R = 50 fm), and this can be seen 
also in the „Potential energy” window of the simulation.  The horizontal purple line shows the total 

energy of the alpha particle, which is potkin EEE   (E = 3 MeV in the picture). Since the Ekin kinetic 

energy cannot be negative, the alpha-particle can approach the nucleus only while Epot<E, i.e. the 
horizontal line is above the potential energy (about 75 fm).  
 

 


