
-1- 

Nuclear Physics 

Practice 8 

Exercise 1: Recoil energy in gamma-decay 

Following the decay of 198Au, three γ’s are observed to be emitted from states in 198Hg; their 

energies (in keV) are 1, 411.80441±0.00015; 2, 675.88743±0.00069 and 3, 1087.69033±0.00074. 

It is suggested that there are two excited states E1 and E2 in 198Hg that are populated in the decay, 

and that the γ’s correspond respectively to the transitions E1→E0, E2→E1, E2→E0 (where E0 

represents the ground state). If this hypothesis were correct, we would expect Eγ,1+Eγ,2=Eγ,3, 

which is almost but not quite true according to the experimental uncertainties. Show how the 

proper inclusion of the nuclear recoil resolves the discrepancy. 

Solution: 

The three γ-decay energies are the following: 

keV00015.080441.4111, E  

keV00069.088743.6752, E  

keV00074.069033.10873, E  

Let us calculate the sum of the first two γ-energies: 

keV00071.069184.10872,1,

'

3,   EEE  

where the uncertainty of the energy was determined with the Gaussian error propagation formula: 
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The difference between the two energies: 

keV00103.000151.03,

'

3,   EE  

Although the difference is small, the question arises whether there is some effect which has been 

yet neglected in the calculation. → Recoil of the nucleus! 

The momentum conservation law: 
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the momentum of the γ-photon is expressed as the following: 
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substituting this back to the energy conservation law, the recoil energy will be: 
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The corrected γ-energies (the uncertainties also changed, but the change is smaller than the last 

digit): 

keV00015.080487.411
~

1, E  

keV00069.088867.675
~

2, E  

keV00074.069354.1087
~

3, E  

Let us calculate now the sum of the first two corrected γ-energies: 

keV00071.069354.1087
~~~

2,1,

'

3,   EEE  

where the uncertainty of the energy was determined again with the Gaussian error propagation 

formula: 
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The difference between the two corrected energies: 

keV00103.00
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3,   EE  
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Exercise 2: Resonance absorption of γ-radiation and the Mössbauer effect 

The phenomenon of resonance absorption has been observed long time ago in atomic 

spectroscopy. However, resonance absorption of γ-radiation in nuclei could not be observed 

experimentally because of the effect of nuclear recoil is much greater than in atomic 

spectroscopy. The reason behind this can be understood through investigating the absorption 

cross-section around the resonance (this formula applies only for absorption in the nucleus, i.e. 

without reactions with the atomic electrons): 
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where 0  is the absorption cross-section at the exact resonant energy, E  is the energy of the γ-

photon, E  is the energy difference between the initial and the final state. RE  is the recoil 

energy, which we have already calculated in the previous example: 
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For example let us consider the γ-decay of 198Hg with Eγ=412 keV energy: 

eV46.0RE  

Γ  is the natural linewidth of the initial state. For any given state with a mean lifetime  , the 

measurement of the energy of the state gives a distribution with the corresponding linewidth: 




Γ  

The schematic view of a resonance absorption experiment would look like the this: 

 

In practice we would be unlikely to observe the natural linewidth Γ . A primary additional 

contribution is the Doppler-broadening due to the Maxwellian-distribution of the velocities, Δ: 
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The Doppler-shifted energies: 
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and the Maxwellian-distribution is proportional to: 
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The Gaussian energy distribution will be therefore: 
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from this the formula for the Doppler-broadening can be obtained by calculating the 

corresponding FWHM ))2ln(22FWHM(  . At room temperature kT=0.025 eV, therefore for 

example for the 198Hg 412 keV γ-transition, the Doppler-broadening is: 

eV36.0  

which dominates the natural linewidth which is for the considered 198Hg excited state 2·10-5 eV. 

Even in thermal contact with 4 K liquid helium reservoir, the Doppler-broadening is: 

eV042.0  

Tunable photons of the sort needed for the resonance experiment do not exist (the best one can do 

is brehmsstrahlung or synchrotron radiation). In the laboratory one has to work with discrete γ-

energies. Therefore we must find a source which emits γ-radiation of an energy within at most 

0.1 eV of the desired resonant energy ΔE+ER. This is very unlikely, especially with proper 

multipole characteristics. It makes sense to try to use a source in which the γ-radiation is emitted 

in the same downward transition that we are trying to excite upwards by resonance absorption. 

However, due to nuclear recoil, the source emits γ-photons with ~ΔE-ER energy, while the 

absorber would need ~ΔE+ER γ-energies. In most cases the overlap is minimal between the two 

distributions, which gives very small absorption probabilities. 
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Several techniques exist for overcoming the energy difference 2ER between the source and the 

absorber: 

1) Doppler-broadening 

2) Doppler-shift: 

Let us move the source toward the absorber at high speed: 











c
EE

v
1'   

The changed energy should be Eγ+2ER, from which the needed velocity can be calculated: 
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Experiments of this type are usually done by attaching the source to the tip of a rotor of a 

centrifuge spinning at 104-105 revolutions per minute. 

3) Mössbauer-effect 

The most successful and useful technique for defeating the recoil problem is the Mössbauer-

effect. In 1958, Rudolf Mössbauer performed a resonance absorption experiment using a source 

of 191Ir, where the emitting and absorbing nuclei were bound in a crystal lattice. Typical binding 

energies are 1-10 eV, so there is not enough recoil energy for the atom to leave its lattice site. A 

classical picture is that the mass in the recoil formula becomes the mass of the entire solid. In 

addition, a certain fraction of the atoms in a lattice are in the vibrational ground state of thermal 

motion, and therefore show very little Doppler-broadening. 
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Since both the absorber and the source have the natural width, in the case of 198Hg the total 

linewidth is 2·10-5 eV. To demonstrate the phenomenon, if we move the source towards the 

absorber with such a speed that the Doppler-shift will be greater than the natural linewidth, the 

resonance will be destroyed. For 198Hg this velocity is: 
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With the Mössbauer-effect, one can measure relative energies with extreme precision. If we 

modify the environment of the absorber or the source such that the initial and final states are 

shifted with a very small δE, we can measure this energy if it is in the same order as the natural 

linewidth. For example for the 198Hg, we can measure ~10-5 eV energy difference for ~105 eV γ-

ray energy, or an effect of one part in 1010. 

 


