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Nuclear Physics 

Practice 6 

Exercise 1: Multipole expansion of the wave equation 

The nucleus can be in different states described by different parities and angular momenta: 

 ground state: I0, π0 

 excited states: IN, πN 

Important rule: the emitted γ-photon carries the conservation of angular momentum, parity and 

energy. 

→ The transition can be determined by detecting the γ-photon. 

The place of the detection is far from the source, therefore we can apply the Maxwell-equations 

in vacuum: 
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We will apply a special treatment, the multipole expansion, in order to be able to describe the 

angular momentum and parity of the radiation. Let us consider a harmonic field approximation: 
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From the Maxwell equation, we can write (with the wavenumber k=ω/c): 
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We will use the following identities: 
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From the above equations we get: 
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These are the Helmholtz-equations, which give 2x3=6 equations for the different components, 

and which are coupled through the divergence equations. Since their solution is still complicated, 

we will use another approach. If div(A)=0 for an A vector field, then: 
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Therefore the Helmholtz-equations will also be true for these scalar products: 
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Theorem: 
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where )(krfl  are the spherical Hankel-functions and )(m

lY  are the spherical harmonics. 

Using the above theorem, the rE and rB scalar products can be also expanded: 
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We can give E and B with the linear combinations of the transverse electric (TE) and transverse 

magnetic (TM) modes: 

 TE mode: 0Er  (magnetic transition) → B(m), E(m) 

 TM mode: 0Br  (electric transition) → B(e), E(e) 

The solution can be obtained with the following transformations, using )(  riL  : 
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applying the L angular momentum operator on both sides we get: 
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Assuming that 
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mlE  also contains the spherical harmonics, we are able to use the eigenvalue 

equation of the L2 operator: 

)()1()( 22
 m

l

m

l YllYL   

)()(~)()(
)1(

)(

, 


 m

lllm

m

lllm

m

ml YLkrfaYLkrfa
ll

ck
E


 

Now we can express the TE mode of 
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2) TM mode: 

A similar derivation leads us to the following results: 
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The total electromagnetic field is the sum of the TE and TM modes: 
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These are true in the case where there is no source. Problem: the nucleus. 

→ The presence of the nucleus will determine the lma~ , lmb
~

 coefficients (complicated quantum 

mechanical calculation). 

The angular distribution of the power can be calculated with the Poynting-vector: 
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The total emitted power: 
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where we used the following: 
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The transition probability per unit time can be calculated by dividing with the photon energy: 
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The same results arise from Fermi’s golden rule. 

Parity: 
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From the angular momentum conservation we can tell which transitions are possible from the 

initial state: 
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The parity can be determined from the golden rule: 
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The electromagnetic field can be described with the A vector potential and Φ scalar potential: 

AB   

t

A
E




  

Since Φ decreases quickly, A will determine the interaction Hamilton-operator: 
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TE mode (magnetic transition): the parity of B is (-1)l+1→π(pA)=(-1)l+1 

TM mode (electric transition): the parity of B is (-1)l→ π(pA)=(-1)l 
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The parity of the transition is (-1), therefore E3, M2 and M4 are possible transitions. Note that in 

some of the literature TE is called electric transition and TM is called magnetic transition! 

 


