Nuclear Physics

Practice 6

Exercise 1: Multipole expansion of the wave equation
The nucleus can be in different states described by different parities and angular momenta:

- ground state: I_{0}, π_{0}
- excited states: $I_{\mathrm{N}}, \pi_{\mathrm{N}}$

Important rule: the emitted γ-photon carries the conservation of angular momentum, parity and energy.
\rightarrow The transition can be determined by detecting the γ-photon.
The place of the detection is far from the source, therefore we can apply the Maxwell-equations in vacuum:

$$
\begin{gathered}
\nabla \underline{B}=0 \\
\nabla \underline{E}=0 \\
\nabla \times \underline{B}=\mu_{0} \varepsilon_{0} \dot{E}=\frac{1}{c^{2}} \underline{\dot{E}} \\
\nabla \times \underline{E}=-\underline{\dot{B}}
\end{gathered}
$$

We will apply a special treatment, the multipole expansion, in order to be able to describe the angular momentum and parity of the radiation. Let us consider a harmonic field approximation:

$$
\begin{aligned}
& \underline{E}(\underline{r}, t)=\underline{E}(\underline{r}) \exp (-i \omega t) \\
& \underline{B}(\underline{r}, t)=B(\underline{r}) \exp (-i \omega t)
\end{aligned}
$$

From the Maxwell equation, we can write (with the wavenumber $k=\omega / c$):

$$
\begin{aligned}
& \nabla \times \underline{E}=i \omega \underline{B} \rightarrow \underline{B}=-\frac{i}{c k} \nabla \times \underline{E} \\
& \nabla \times \underline{B}=-\frac{i \omega}{c^{2}} \underline{E} \rightarrow \underline{E}=\frac{i c}{k} \nabla \times \underline{B}
\end{aligned}
$$

We will use the following identities:

$$
\begin{aligned}
& \nabla \times(\nabla \times \underline{E})=\operatorname{grad} \operatorname{div} \underline{E}-\Delta \underline{E} \\
& \nabla \times(\nabla \times \underline{B})=\operatorname{grad} \operatorname{div} \underline{B}-\Delta \underline{B}
\end{aligned}
$$

From the above equations we get:

$$
\nabla \times(\nabla \times \underline{E})=\nabla \times(i \omega \underline{B})=i \omega \nabla \times \underline{B}=i \omega\left(-\frac{i \omega}{c^{2}} \underline{E}\right)=k^{2} \underline{E}=0-\Delta \underline{E} \quad \Rightarrow \quad\left(\Delta+k^{2}\right) \underline{E}=0
$$

$$
\nabla \times(\nabla \times \underline{B})=\nabla \times\left(-\frac{i \omega}{c^{2}} \underline{E}\right)=-\frac{i \omega}{c^{2}} \nabla \times \underline{E}=-\frac{i \omega}{c^{2}}(i \omega \underline{B})=k^{2} \underline{B}=0-\Delta \underline{B} \quad \Rightarrow \quad\left(\Delta+k^{2}\right) \underline{B}=0
$$

These are the Helmholtz-equations, which give $2 \times 3=6$ equations for the different components, and which are coupled through the divergence equations. Since their solution is still complicated, we will use another approach. If $\operatorname{div}(\underline{A})=0$ for an \underline{A} vector field, then:

$$
\underline{r} \Delta \underline{A}=\Delta(\underline{r} \underline{A})
$$

Therefore the Helmholtz-equations will also be true for these scalar products:

$$
\begin{aligned}
& \left(\Delta+k^{2}\right) \underline{r} \underline{E}=0 \\
& \left(\Delta+k^{2}\right) \underline{r} \underline{B}=0
\end{aligned}
$$

Theorem:

$$
\begin{gathered}
\left(\Delta+k^{2}\right) \Phi(\underline{r})=0 \\
\Rightarrow \quad \Phi(\underline{r})=\sum_{l=0}^{\infty} \sum_{m=-l}^{l} a_{l m} f_{l}(k r) Y_{l}^{m}(\underline{\Omega})
\end{gathered}
$$

where $f_{l}(k r)$ are the spherical Hankel-functions and $Y_{l}^{m}(\underline{\Omega})$ are the spherical harmonics.
Using the above theorem, the $\underline{r E}$ and $\underline{r} \underline{B}$ scalar products can be also expanded:

$$
\begin{aligned}
& \underline{r} \underline{E}=\sum_{l, m} a_{l m} f_{l}(k r) Y_{l}^{m}(\underline{\Omega}) \\
& \underline{r} \underline{B}=\sum_{l, m} b_{l m} f_{l}(k r) Y_{l}^{m}(\underline{\Omega})
\end{aligned}
$$

We can give \underline{E} and \underline{B} with the linear combinations of the transverse electric (TE) and transverse magnetic (TM) modes:

- TE mode: $\underline{r} \underline{E}=0$ (magnetic transition) $\rightarrow B^{(\mathrm{m})}, E^{(\mathrm{m})}$
- TM mode: $\underline{r} \underline{B}=0$ (electric transition) $\rightarrow B^{(\mathrm{e})}, E^{(\mathrm{e})}$

The solution can be obtained with the following transformations, using $\underline{L}=-i \hbar(\underline{r} \times \nabla)$:

1) TE mode:

$$
\begin{gathered}
\underline{r} \underline{B}_{l, m}^{(m)}=\underline{r}\left(-\frac{i}{c k} \nabla \times \underline{E}_{l, m}^{(m)}\right)=-\frac{i}{c k} \underline{r}\left(\nabla \times \underline{E}_{l, m}^{(m)}\right)=-\frac{i}{c k}(\underline{r} \times \nabla) \underline{E}_{l, m}^{(m)}=-\frac{i}{c k} \cdot\left(-\frac{1}{i \hbar}\right) \underline{L} \underline{E}_{l, m}^{(m)}=\frac{1}{c k \hbar} \underline{L} \underline{E}_{l, m}^{(m)} \\
\Rightarrow \frac{1}{c k \hbar} \underline{L} \underline{E}_{l, m}^{(m)}=a_{l m} f_{l}(k r) Y_{l}^{m}(\underline{\Omega})
\end{gathered}
$$

applying the \underline{L} angular momentum operator on both sides we get:

$$
\frac{1}{c k \hbar} \underline{L}^{2} \underline{E}_{l, m}^{(m)}=a_{l m} f_{l}(k r) \underline{L} Y_{l}^{m}(\underline{\Omega})
$$

Assuming that $\underline{E}_{l, m}^{(m)}$ also contains the spherical harmonics, we are able to use the eigenvalue equation of the \underline{L}^{2} operator:

$$
\begin{gathered}
\underline{L}^{2} Y_{l}^{m}(\underline{\Omega})=\hbar^{2} l(l+1) Y_{l}^{m}(\underline{\Omega}) \\
\underline{E}_{l, m}^{(m)}=\frac{c k}{\hbar l(l+1)} a_{l m} f_{l}(k r) \underline{L} Y_{l}^{m}(\underline{\Omega})=\tilde{a}_{l m} f_{l}(k r) \underline{L} Y_{l}^{m}(\underline{\Omega})
\end{gathered}
$$

Now we can express the TE mode of $\underline{B}_{l, m}^{(m)}$ using the rotation:

$$
\underline{B}_{l, m}^{(m)}=-\frac{i}{c k} \tilde{a}_{l m} \nabla \times\left[f_{l}(k r) \underline{L} Y_{l}^{m}(\underline{\Omega})\right]
$$

2) TM mode:

A similar derivation leads us to the following results:

$$
\begin{gathered}
\underline{B}_{l, m}^{(e)}=\tilde{b}_{l m} f_{l}(k r) \underline{L} Y_{l}^{m}(\underline{\Omega}) \\
\underline{E}_{l, m}^{(e)}=\frac{i c}{k} \tilde{b}_{l m} \nabla \times\left[f_{l}(k r) \underline{L} Y_{l}^{m}(\underline{\Omega})\right]
\end{gathered}
$$

The total electromagnetic field is the sum of the TE and TM modes:

$$
\begin{aligned}
& \underline{E}=\sum_{l, m}\left[\tilde{a}_{l m} f_{l}(k r) \underline{L} Y_{l}^{m}(\underline{\Omega})+\frac{i c}{k} \tilde{b}_{l m} \nabla \times\left(f_{l}(k r) \underline{L} Y_{l}^{m}(\underline{\Omega})\right)\right] \\
& \underline{B}=\sum_{l, m}\left[\tilde{b}_{l m} f_{l}(k r) \underline{L} Y_{l}^{m}(\underline{\Omega})-\frac{i}{c k} \tilde{a}_{l m} \nabla \times\left(f_{l}(k r) \underline{L} Y_{l}^{m}(\underline{\Omega})\right)\right]
\end{aligned}
$$

These are true in the case where there is no source. Problem: the nucleus.
\rightarrow The presence of the nucleus will determine the $\tilde{a}_{l m}, \tilde{b}_{l m}$ coefficients (complicated quantum mechanical calculation).
The angular distribution of the power can be calculated with the Poynting-vector:

$$
\begin{aligned}
& P_{l, m}^{(m)}(\underline{\Omega}) \sim\left|\tilde{a}_{l m}\right|^{2}\left|\underline{L} Y_{l}^{m}(\underline{\Omega})\right|^{2} \\
& P_{l, m}^{(e)}(\underline{\Omega}) \sim\left|\tilde{b}_{l m}\right|^{2}\left|\underline{L} Y_{l}^{m}(\underline{\Omega})\right|^{2}
\end{aligned}
$$

The total emitted power:

$$
\begin{aligned}
& P_{l, m}^{(m)}=\int_{4 \pi} P_{l, m}^{(m)}(\underline{\Omega}) d \underline{\Omega} \sim\left|\tilde{a}_{l m}\right|^{2} \\
& P_{l, m}^{(e)}=\int_{4 \pi} P_{l, m}^{(e)}(\underline{\Omega}) d \underline{\Omega} \sim\left|\tilde{b}_{l m}\right|^{2}
\end{aligned}
$$

where we used the following:

$$
\int_{4 \pi}\left|\underline{L} Y_{l}^{m}(\underline{\Omega})\right| d \underline{\Omega}=\int_{4 \pi} Y_{l}^{m *}(\underline{\Omega}) \underline{L}^{2} Y_{l}^{m}(\underline{\Omega}) d \underline{\Omega}=\hbar^{2} l(l+1)
$$

The transition probability per unit time can be calculated by dividing with the photon energy:

$$
W_{21}=\frac{P_{l, m}^{(e, m)}}{\hbar \omega}
$$

The same results arise from Fermi's golden rule.
Parity:

$$
I_{2}^{\pi 2} \rightarrow I_{1}^{\pi 1}+(l, m)
$$

From the angular momentum conservation we can tell which transitions are possible from the initial state:

$$
\begin{gathered}
\left|I_{2}-I_{1}\right| \leq l \leq\left|I_{2}+I_{1}\right| \\
m=M_{2}-M_{1}
\end{gathered}
$$

The parity can be determined from the golden rule:

$$
\left.\lambda_{f i} \sim\left|M_{f i}\right|^{2}=\left|\langle\mathrm{f}| H_{I}\right| \mathrm{i}\right\rangle\left.\right|^{2}
$$

The electromagnetic field can be described with the \underline{A} vector potential and Φ scalar potential:

$$
\begin{gathered}
\underline{B}=\nabla \times \underline{A} \\
\underline{E}=-\nabla \Phi-\frac{\partial \underline{A}}{\partial t}
\end{gathered}
$$

Since Φ decreases quickly, \underline{A} will determine the interaction Hamilton-operator:

$$
H_{I} \sim \underline{p} \underline{A}
$$

TE mode (magnetic transition): the parity of \underline{B} is $(-1)^{l+1} \rightarrow \pi(\underline{p A})=(-1)^{l+1}$
TM mode (electric transition): the parity of \underline{B} is $(-1)^{l} \rightarrow \pi(p A)=(-1)^{l}$

Example:

$$
\begin{gathered}
3^{-} \rightarrow 1^{+} \\
|3-1| \leq l \leq|3+1| \\
l=2,3,4
\end{gathered}
$$

The parity of the transition is (-1), therefore E3, M2 and M4 are possible transitions. Note that in some of the literature TE is called electric transition and TM is called magnetic transition!

