

Slowing down the neutrons Use a	n material, where
• mass-number is small (takes off l	ot of energy in one collision),
• has a large macroscopic neutron-	scattering cross-section,
 has a small macroscopic neutron- 	absorption cross section.
A material with these parameters is	called: moderator.
The best moderators are the heavy	water and the pure graphite
The hydrogen in the light water ab	sorbs some of the neutrons
by radiative capture: ¹	$H + n \longrightarrow {}^{2}H + \gamma$
Possibilities for the realisation of t	he sustainable chain reaction:
Fuel (enrichment)	Moderator
<i>Fuel (enrichment)</i> Natural uranium (0,71% ²³⁵ U)	<i>Moderator</i> Heavy water, pure graphite
Fuel (enrichment) Natural uranium (0,71% ²³⁵ U) 3-5% enriched uranium	Moderator Heavy water, pure graphite Light water
Fuel (enrichment) Natural uranium (0,71% ²³⁵ U) 3-5% enriched uranium >40% enriched uranium	ModeratorHeavy water,pure graphiteLight waterModerator is not needed
Fuel (enrichment) Natural uranium (0,71% ²³⁵ U) 3-5% enriched uranium >40% enriched uranium (>90%)	Moderator Heavy water, pure graphite Light water Moderator is not needed (nuclear weapon)

What is At first we This will	k_{eff} <u>depending</u> neglect the esc be characterized	on? ape \longrightarrow "infinit 1 by: k_{∞}	tely large" reactor!
Our react • thermal • construc • fuel is s	or will be: reactor (with m ction materials (omewhat enrich	oderator, slow neu not only fuel) and uranium, (there	utrons), e is also ²³⁸ U)
The absor	rption of the ²³⁸	U should be taken	into account:
10000	σ_t (barn)		²³⁸ U
1000		111-	Resonances!!
100			
10 -			MM
1 -			
0,0	001	1 <i>E_n</i> (eV) 10	000 10⁶ 4

"Four fa	nctor" fo	rmula (cor	<u>ntd.)</u>			
Summa	rized:	$k_{\infty} =$	$\eta \cdot p \cdot f \cdot$	ε	_	
Reprodu	ction fac	tor	$/ \land$	F	ast fission	n factor
Resonan	ce-escap	e probabilit	y .	Thermal	utilisation	factor
Character	istics of 1	reactor-fuel	materials (for thern	nal neutro	ns):
		$\sigma_{f}(\text{barn})$	σ_a (barn)	v	η]
	²³³ U	531	577	2,50	2,30	1
	²³⁵ U	584	683	2,43	2,08	1
	²³⁸ U	5·10 ⁻⁴	2,71	-	-]
	U _{nat}	4,18	7,69	2,27	1,34]
	²³⁹ Pu	750	1021	2,88	2,11]
η shows, w	hat shou	ld be achie	ved with the	e other fa	actors!	
For exampl no sustaina	e: with n ble chair	atural uran	ium <i>p∙f∙ε></i> an be achiev	 1/1,34 ved even 	= 0,746 for infinit	, otherwise te reactor!

Some considerations about the safety

International Nuclear Event Scale (INES):

9

Two types of major accidents:

Criticality accidents are, when $k_{eff} > 1$ occurs in an uncontrolled way. The worst of this type is the **prompt-criticality**, which is not only uncontrolled, but it is uncontrollable (e.g. Chernobyl)

Loss of coolant accidents (LOCA), when some pipe breaks in the primary circuit, or the circulation of the coolant stops or slows down (pump failure or black out), the cooling of the core gets endangered (e.g. Fukushima)

How to avoid accidents?

Accidents cannot be completely "avoided", but their probability can be decreased. (PSA \rightarrow probabilistic safety assessment)

For example: the core-melt probability

- for Gen-II reactors was around 10⁻⁴ /year
- for Gen-III reactors is around 10⁻⁶/year
- for Gen-IV reactors will be 10⁻⁷/year

Basic design of a nuclear reactor	
 fuel (uranium, plutonium, MOX) moderator (water, heavy water, graphite) coolant (liquid, gas) control elements (borated iron rods, boron acid solved in the coolant) biological shield 	control rods fuel moderator
concrete, neavy concrete)safety installations	11

<u>Classification of nuclear reactors</u> (1)	
• <u>According to their purpose</u>	
 research reactors 	
(isotope production, nuclear research, education)	
 power reactors 	
(energy production)	
- breeding reactors	
(production of new fissile material, see later)	
– impulse reactors	
(special nuclear research)	
- material research reactors	
(research on structural materials)	
· *	
	12

10

Short history of nuclear power:
1932 Discovery of the neutron (James Chadwick)
1934 Patent of the chain reaction with neutrons (Leo Szilárd)
1938 Discovery of the nuclear fission
(Otto Hahn, Friedrich Strassmann, Lise Meitner)
1942 Dec. 2. First nuclear pile, self-sustained chain reaction (Chicago
(Enrico Fermi, Leo Szilárd, Eugene Wigner)
1943 High-power nuclear reactors start operating (Hanford)
(Eugene Wigner) Purpose: plutonium production for A-bomb 1939-1945 Manhattan Project (development of nuclear weapon)
Scientific leader: Robert Oppenheimer
1945. July 16. First experimental explosion test ("Trinity test") Alamogordo desert, USA ²³⁹ Pu-based nuclear weapon
1945. Aug. 6. Hiroshima explosion (²³⁵ U-based nuclear weapon)
1945. Aug. 9. Nagasaki explosion (²³⁹ Pu-based nuclear weapon)
1954 First commercial NPP (Obninsk, Soviet Union, 5 MWe)1957 Shippingport, first commercial NPP in USA, 60 MWe23

