## Nuclear Physics (13<sup>th</sup> lecture)

Cross sections of special neutron-induced reactions

## **NUCLEAR FISSION**

- · Mechanism and characteristics of nuclear fission.
  - $\circ~$  The fission process
  - o Mass distribution of the fragments
  - o Energy balance
  - o Fission barrier
  - **o** Fission neutrons: prompt and delayed neutrons
- Nuclear chain reaction
  - o Time behaviour of the nuclear chain reaction, criticality

1

 $\circ~$  Methods for achieving self-sustaining chain reaction

## Cross sections of special neutron-induced reactions



















| <b>Example:</b> suppose that the <sup>236</sup> U nucleus fissions the following way:                                                        |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| $^{236}\text{U} \longrightarrow ^{90}\text{Kr} + {}^{143}\text{Ba} + 3n$                                                                     |  |  |  |  |  |
| Determine, how "far" are the fragments at the scission point, when                                                                           |  |  |  |  |  |
| only Coulomb-forces act.                                                                                                                     |  |  |  |  |  |
| Assume, that their total kinetic energy is 168 MeV.                                                                                          |  |  |  |  |  |
| Solution:                                                                                                                                    |  |  |  |  |  |
| At the "scission point" they have only Coulomb potential energy.                                                                             |  |  |  |  |  |
| this will turn into their kinetic energy:                                                                                                    |  |  |  |  |  |
| $1  Z_1 Z_2 e^2$                                                                                                                             |  |  |  |  |  |
| $\frac{1}{4\pi\varepsilon_0} \cdot \frac{1}{d} = 168 \cdot 1, 6 \cdot 10^{-5} \text{ J}$ Here $Z_1 = 36 \text{ (Kr)}, Z_2 = 36 \text{ (Ba)}$ |  |  |  |  |  |
| From this we get: $d \sim 17.3$ fm                                                                                                           |  |  |  |  |  |
| The radius of both nuclei                                                                                                                    |  |  |  |  |  |
| using $R = r \sqrt[3]{A}$                                                                                                                    |  |  |  |  |  |
| 5,4 5,6 6,3                                                                                                                                  |  |  |  |  |  |
| $R_{\rm Kr} = 5.4 {\rm fm}, R_{\rm Ba} = 6.3 {\rm fm}$                                                                                       |  |  |  |  |  |
| The geometry of thescission":                                                                                                                |  |  |  |  |  |
| 12                                                                                                                                           |  |  |  |  |  |

## Energy balance of the fission <sup>235</sup>U(n,f)

The total energy will be released through several different processes. This influences the place and the time of heat production

| The kinetic energy of the fragments                                                                                                                            | 168 MeV (82,0 %)   |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--|--|--|--|--|--|
| The energy of the $\beta$ -particles from the fragments                                                                                                        | 8 MeV ( 3,9 %)     |  |  |  |  |  |  |
| Energy of the neutrons emitted in the fission                                                                                                                  | 5 MeV (2,4 %)      |  |  |  |  |  |  |
| Energy of the prompt $\gamma$ -photons                                                                                                                         | 7 MeV (3,4%)       |  |  |  |  |  |  |
| Energy of the $\gamma$ –radiation of the fragments                                                                                                             | 7 MeV ( 3,4 %)     |  |  |  |  |  |  |
| Energy of the antineutrinos emitted by the                                                                                                                     |                    |  |  |  |  |  |  |
| $\beta$ -decays of the fragments                                                                                                                               | 10 MeV ( 4,9 %)    |  |  |  |  |  |  |
| TOTAL                                                                                                                                                          | 205 MeV (100%)     |  |  |  |  |  |  |
| Short range (in the fuel, or close to it)<br>Medium range (coolant, reactor vessel,<br>Very long range (leaves the reactor)<br>Prompt (in time of the fission) | biological shield) |  |  |  |  |  |  |
|                                                                                                                                                                | 11                 |  |  |  |  |  |  |















| The delayed neutrons are grouped into 6 groups (according to half lives)                                                                 |                      |                      |                     |                                                       |    |  |
|------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------|---------------------|-------------------------------------------------------|----|--|
|                                                                                                                                          | E <sub>n</sub> (MeV) | $T_{\rm i}({\rm s})$ | $\beta_{\rm i}(\%)$ | Typical precursors                                    |    |  |
| 1                                                                                                                                        | 0,25                 | 56                   | 0,020               | <sup>87</sup> Br, <sup>142</sup> Cs                   |    |  |
| 2                                                                                                                                        | 0,56                 | 23                   | 0,143               | <sup>88</sup> Br, <sup>137</sup> I                    |    |  |
| 3                                                                                                                                        | 0,43                 | 6,2                  | 0,128               | <sup>89</sup> Br, <sup>138</sup> I                    |    |  |
| 4                                                                                                                                        | 0,62                 | 2,3                  | 0,255               | <sup>94</sup> Kr, <sup>139</sup> I, <sup>143</sup> Cs |    |  |
| 5                                                                                                                                        | 0,42                 | 0,6                  | 0,074               | <sup>140</sup> I, <sup>145</sup> Cs                   |    |  |
| 6                                                                                                                                        | 0,51                 | 0,2                  | 0,030               | <sup>87</sup> As, <sup>143</sup> Xe                   |    |  |
| Total: $\beta = 0.65$ %                                                                                                                  |                      |                      |                     |                                                       |    |  |
| The delayed neutron ratio: $\beta = \frac{\text{(delayed n)}}{\text{(total n)}} \sim \frac{\text{(delayed n)}}{\text{(prompt n)}}$       |                      |                      |                     |                                                       |    |  |
| The appearance of the delayed neutrons after the fission:                                                                                |                      |                      |                     |                                                       |    |  |
| $N(t) = \sum_{i=1}^{6} \beta_i \cdot e^{-\ln 2 \cdot \frac{t}{T_i}}$ Their role is very important in the control of the chain reaction!! |                      |                      |                     |                                                       |    |  |
|                                                                                                                                          | <i>i</i> =           | 1                    |                     |                                                       | 20 |  |







The generation time of the delayed neutrons will be extended by the half-life of the precursor  $\longrightarrow$  it can reach even several seconds! The role of the delayed neutrons: increase the effective generation time! The system can be controlled, if  $k_{eff} < 1$  without the delayed neutrons! Therefore,  $k_{eff} < 1+\beta = 1,0065$  should always be fulfilled! **Reactivity:**  $\rho = \frac{k_{eff} - 1}{k_{eff}}$  (definition) For a prompt-critical system:  $k_{eff} = 1+\beta$ , therefore its reactivity:  $\rho = \frac{1+\beta-1}{1+\beta} \approx \beta$  (since  $1+\beta = 1,0065 \sim 1$ ) Commonly used unit of the reactivity is the \$ (dollar), which is the reactivity in delayed neutron units. The reactivity is 1\$, if  $\frac{\rho}{\beta} = 1$  24

