Nuclear Physics (12th lecture) NUCLEAR REACTIONS

- Nuclear reactions. Conserved quantities. Reaction energy
- · Kinematics, laboratory and centre of mass (CM) systems

1

- · Microscopic and macroscopic cross sections
- · Two additivities of the cross sections.
- Differential cross-sections.
- Excitation functions.
- Nuclear reaction mechanisms
- · Direct reactions: knock-out, pick-up, stripping
- · Compound reactions and resonances

Scatterings: special nuclear reactions		
where $a = c$, (and $b = d$), which means that the		
type (composition) of the particles does not change.		
Elastic scattering: the particles do not get excited,		
the total kinetic energy is conserved		
Inelastic scattering: at least one of the particles get excited		
(then γ -decay), the total kinetic energy is NOT conserved.		
Examples	Name	Notations
$n + {}^{235}_{92}U \rightarrow {}^{235}_{92}U + n'$	elastic neutron scattering (n,n')	$^{235}_{92}$ U(n, n') $^{235}_{92}$ U
$n + {}^{235}_{92}U \rightarrow {}^{235}_{92}U + n' + \gamma$	inelastic n-scattering $(n,n'\gamma)$	$^{235}_{92}U(n,n'\gamma)^{235}_{92}U$
$n + {}^{235}_{92}U \rightarrow {}^{236}_{92}U + \gamma$	n-capture with γ -emission, radiating capture, (n,γ) reaction	$^{235}_{92}$ U(n, γ) $^{236}_{92}$ U
$\alpha + {}^9_4 \text{Be} \rightarrow {}^{12}_6 \text{C} + \text{n}$	α -induced n-emission, (α ,n) reaction	${}^{9}_{4}\text{Be}(\alpha, n){}^{12}_{6}\text{C}$
$n + {}^{59}_{27}Co \rightarrow {}^{58}_{27}Co + 2n$	(n,2n) reaction	$^{59}_{27}$ Co(n,2n) $^{58}_{27}$ Co
		4

1

 $(M_a + M_b - M_c - M_d) \cdot c^2 = T_c + T_d - (T_a + T_b) = Q$ (*)

Energy threshold for endotherm reactions (Q < 0). Since $T_c + T_d \ge 0$, therefore $(T_a + T_b) \ge -Q > 0$. The initial kinetic energy of the particles should be at least at this level, for the reaction to occur!

The reaction energy and the masses of the particles: From the (*) equation $Q = (M_a + M_b - M_c - M_d) \cdot c^2$ This way the reaction energy can be calculated!

Here M_a , M_b etc. are not necessary the ground state rest masses of the particles! For example if particle d was formed in an excited state with E_x energy, then $M_d = M_d(0) + E_x/c^2$

7

ground state rest mass

Activation energy (for example at electrically charged particles) One of the main reactions of the fusion energy production: ${}_{1}^{2}H+{}_{1}^{3}H\rightarrow{}_{2}^{4}He+n+17,6 \text{ MeV}$

This reaction does not occur spontaneously, although it is exothermic! Cause: the nuclear interaction has short range, \longrightarrow the reaction partners have to get close together.

They need some (kinetic) energy, because of the Coulomb-repulsion! The energy conditions (without the kinetic energies):

Additional note to the energy threshold We saw: $(T_a + T_b) \ge -Q$. However, this is valid only in CM-system, since here the total momentum and kinetic energy of the system is 0. These T_a and T_b kinetic energies are the energies in CM-system. In laboratory system the total momentum of the system is not zero, and this has to be conserved after the reaction! Suppose, that the *b* target nucleus is at rest: $T_b=0$. The energy threshold for an endotherm reaction: (try to demonstrate it at home!) Here T_a is the kinetic energy in the laboratory system If $M_a >> M_b$, then $T_a >> -Q$! (Inverse kinematics: the projectile is heavier than the target) For colliding beams: laboratory system = CM system $\bigcirc \longrightarrow \longleftarrow \bigcirc$ 10

The probability of nuclear reactions

The nuclear reactions are stochastic processes. (Remember: the radioactive decay was also a stochastic process!) They can be described by statistical laws.

<u>Model</u>: Consider a "dart" board of F = 1 m² surface, where N = 100 pieces of target area are scattered randomly. The surface of each target area is $\sigma = 1$ cm². A blind-folded player throws darts on the board. During 1 hour altogether 200 darts hit the board (n = 200/h). How many target hits can be expected in an hour?

The two additivities of the cross sections		
Remember: every nuclear reaction has its own cross section: $\sigma = \frac{R}{N_{e}}$		
<u>I. Additivity</u> : same reaction partners, different reactions		
If the partners are the same, then <i>N</i> and Φ are also the same for the different reactions, only the reaction rates are different (R_i , <i>i</i> =1,2,3).		
Then $R_{total} = R_1 + R_2 + \dots$		
Therefore the total microscopic cross section (σ_l):		
$\sigma_{t} = \frac{R_{total}}{N \cdot \phi} = \frac{R_{1} + R_{2} + \dots}{N \cdot \phi} = \frac{R_{1}}{N \cdot \phi} + \frac{R_{2}}{N \cdot \phi} = \sigma_{1} + \sigma_{2} + \dots$		
Summarized: $\sigma_1 = \sigma_1 + \sigma_2 + \dots$		
Multiplying both sides with the target nucleus density: $\Sigma_r = \Sigma_1 + \Sigma_2 +$		
<u>Obvious condition</u> : all, mutually exclusive reactions should be listed in the right hand side		
16		

<u>2. Direct reactions</u>

reaction, we call it "spectator".

The interaction between the projectile and the target (or with a part of the target nucleus) occurs fast, in one step.

What does "fast" mean? As compared to what? Example: consider protons with 10 MeV energy $\frac{1}{2}mv^2 = 10 \text{ MeV} = 1,6 \cdot 10^{-12} \text{ J}$ We get for the velocity $v = \sqrt{\frac{3,2 \cdot 10^{-12}}{1,67 \cdot 10^{-27}}} = 4,4 \cdot 10^7 \frac{\text{m}}{\text{s}}$ The size of a nucleus is $R \sim 10^{-14} \text{ m}$, The "interaction time" between the protons and the nucleus: $t = \frac{2R}{v} \approx 8,8 \cdot 10^{-21} \text{ s} \sim 10^{-20} \text{ s}$ This is the order of magnitude of the time of the direct reactions. At the direct reactions the projectile interacts only with one or a few nucleon of the nucleus. The rest of the nucleus is not involved in the

22

The target nucleus "strips off" a nucleon (or small cluster of nucleons) from the projectile, and only the remaining part will be emitted

Typical reactions: high energy projectiles, (d, n), (d, p), $({}^{6}Li, d)$, $({}^{6}Li, \alpha)$ etc.

Characteristics:

- the remaining particle is emitted in "forward" direction, i.e. the differential cross section is large at small angles and small at large angles ("forward scattering").
- the velocity of the remaining particle is about the same as was the velocity of the projectile, therefore its momentum is smaller
- the target nucleus gets the momentum, which the stripped-off part of the projectile had before the reaction. 25

Characteristics of the compound nucleus reaction mechanism:

a) The time of the reaction is much larger than for the direct reactions ($t > 10^{-16}$ s).

b) The compound nucleus has a level scheme, and it can be formed only in one of the allowed levels \rightarrow "resonances" in the formation cross-section!

c) Because the reaction energy will be distributed to all degrees of freedom, a "thermal equilibrium" (thermalization) occurs. Therefore the compound nucleus does not "remember" how it was formed. This has several consequences:

- α) The angular distribution of the particles emitted during the decay is not depending on the direction of the projectile (isotropic angular distribution in CM system)
- β) The decay mode is determined only by the excited state of the compound nucleus (not depending on the mode of the formation of the compound nucleus). Branching ratios

27

3. Nuclear reactions with "compound nucleus" mechanism

We assume that the reaction occurs in two consecutive steps:

- a) The projectile fusions with the target nucleus, a new nucleus is formed: this is the compound nucleus (or intermediate nucleus). The reaction energy of the fusion will be distributed to all degrees of freedom "thermalization".
- The compound nucleus is created in an excited state.
- b) The excited compound nucleus decays into a decay "channel"

