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Nuclear Physics  

(11th lecture) 
Content 

THE NUCLEAR INTERACTION 

• The deuteron 

• Yukawa model for the nuclear interaction 

• Spin dependency and tensor force 

• Charge independency and isospin 

• Mirror nuclei, isobars and isobar analogue states 
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Nuclear interaction 
1) The deuteron 

The simplest nucleus, where the nuclear forces can be studied  

Bound system of a proton and a neutron 

Unfortunately there are only a few experimental facts that can 

be studied, since it exists only in ground state (no excited states, 

no energy level scheme) 

Experimental facts:  

• Binding energy:  2,2 MeV 

• Angular momentum: 

• Magnetic dipole momentum:  

• Electric quadrupole momentum: 

 1J

N  000019,0857411,0 

mb  74,2Q

What can we learn about the nuclear interaction from these 

facts ?  
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• First, since the two nucleons are bound together, the nuclear 

interaction must be attractive 

• From the success of the liquid drop model we know that the 

nuclear interaction must be short ranged 

• Assume that it depends only on the absolute value of the 

distance (central):  V(r).  

The deuteron  (contd.) 

The simplest short range attractive potential is the square well: 
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1.) The binding energy of the deuteron 
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The deuteron  (contd.) 

In the ground state we assume  l = 0 

The Schrödinger equation is easy to solve for  

the square well potential:  
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The solutions inside and outside the potential should be joined, 

therefore the boundary condition: 
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The deuteron  (contd.)  
d

d
d

EV
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-
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0

0cotan


Simplification: what if the deuteron would be „almost” unbound, 

i.e.  Ed = 0 ? 
0cotan 0 VM

d

 2
0


VM

d



We get                                                  ,  if d is in fm.  MeV 
1021

4 22

22

0
ddM

V 


From                   we know that the range is  

smaller than 2 fm, so                          .    

3
0 ArR 

MeV 5,250 V Obviously  
00 VV 

This means that the deuteron is only weakly bound!    0VEd 

-V0  

-Ed  
r 

V(r) 

kinetic 
energy  

d 

Calculation shows that the expectation 

value of the distance between the proton 

and the neutron is larger than d (!)  
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The deuteron  (contd.) 

2.) The spin of the deuteron 

 1J

SLJ 

We assumed L= 0, so the angular momentum comes from S.    

np SSS 





(singulet) 0

   (triplet) 1
S

If the nuclear interaction was independent of spin alignment, 

then the 4 cases would be equivalent                 ¾ of the 

deuterons had J = 1, ¼ of the deuterons had J = 0. 

Experimental fact:                always!  

The V(r) nuclear interaction should be spin-dependent so, that 

the triplet case is favoured! 
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The deuteron  (contd.) 

3.) The magnetic momentum of the deuteron 

We assumed L= 0, so no magnetic momentum can arise from 

orbital motion.                                    (since the spins are parallel)  
np  

  Np  00003,079275,2 

  Nn  00007,091315,1 -
  Nnp  0001,087960,0 

Experimental fact:   Nd  00002,0857411,0 

„Almost” good, but not completely!  

This is the anomalous magnetic moment of the deuteron.  

What can be the reason? Maybe L ≠ 0 ?  
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The deuteron  (contd.) 

If there is an L, then the operator of the magnetic momentum:  
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Evaluation is tedious but straightforward, and we get for 

Maybe L ≠ 0 ?  

The projection of the magnetic momentum on the angular 

momentum: 

Njg Jμ 

Where                      ,   and  gsp = 5,586  and  gsn = -3,826. 

  
pn SSS 
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We know that J = 1, and J = L + S  

Possibilities  L Spin  gj gj 

L = 0 S = 1 + gsn + gsp 1,7592 

L = 1 S = 1 - 1/4gsn+gsp)/2 1,1296 

L = 1 S = 0 - 1/2 0,5 

L = 2 S = 1 + 3/4- (gsn+gsp)/2 -0,1296 

The deuteron  (contd.) 

71482,1jgMeasured value:   

No single orbit can explain the measured value! 

Superposition (mixture)?   ba ba   where 1
22

 ba

This means that    jbjaj gagag
22

1- jbjja ggg 

Obviously, the L = 0 , S = 1 case should be included! 

Since parity should be a good quantum number, the only 

possible contribution is L = 2 , S = 1 
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Substituting the appropriate values and solving the 

                                         equation    jbjaj gagag
22

1-

The deuteron  (contd.) 

0235,0  and  9765,0
22

 bawe get 

Only ~2% of the L = 2 S = 1 wave-function should be mixed! 

What does L-mixing mean for the properties of the nuclear 

interaction? 

We know: for central potentials L is a good quantum number.  

If L-mixing occurs, then L is not a good quantum number  

→ the potential cannot be central!  
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The deuteron  (contd.) 

4.) The quadrupole momentum of the deuteron 

Experimental fact:  

Electric quadrupole momentum:                           > 0 mb  74,2Q
Conclusion: the V(r) potential should 

depend on the (s1r) and (s2r) scalar 

products (on the angles between the 

spins and the distance vector) 

Analogy: the interaction between two 

magnetic dipoles (electrons): 
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For the nucleons: it is NOT of electromagnetic origin, but 

similar shape:   
 

  
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Tensor force  12   

The deuteron  (contd.)  
  

  pnTpn
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If VT(r) is attractive, then this type of interaction gives explanation 

for 

• the sign of the quadrupole momentum (cigar shape) 

• the anomaly of the magnetic momentum (it is not central) 

• the spin-dependency of the two-nucleon interaction  

(for S = 1 it is attractive, for S = 0 repulsive)  

Summarized: 

The nucleon-nucleon interaction is 

• Strong,  

• Attractive, 

• Short range, 

• Spin-dependent, 

• Non-central, 

• Tensor force, 

• Charge independent (see later) 
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Yukawa nuclear interaction 

Hideki Yukawa  

(1907-1981) 

Nobel-prize 1949 

Explains the short range by 

• using the field-theory approach, in analogy with the 

quantum-electrodynamics (was then a new theory) 

• assuming a massive force-carrier boson 

We think now that the different types of interactions 

between particles are carried by (emitting and 

adsorbing) force-carrier bosons 

Interaction Carrier Mass (GeV/c2) Spin 

Strong 

(between quarks) 

8 gluons ~0 1 

Electromagnetic photon 0 1 

Weak W+, W-, Z0 80, 80, 91 1 

Gravity graviton 0 2 

These force-carriers are virtual particles (see later) 
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Yukawa nuclear interaction (contd.) 

Particles usually have nonzero energy.  

Massive particles have energy even at rest: mc2.   

How is it possible to „create” the carrier particles?   

Where does the energy come from?  

Heisenberg-relation for energy and time:  tE

Interpretation: the vacuum can give a „loan” of 

E energy, but only for a limited t time!  

Assume that we want to create a carrier with E = mc2.  

2mc
t


Then the maximal time of the „loan” is 

The carrier cannot travel faster than the light, so for the  

range of the interaction :  
mc

tcd




The higher is the mass of the carrier, the shorter is the interaction range 
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mc
d


Yukawa nuclear interaction (contd.) 

Yukawa: the range of the nucleon-nucleon interaction is ~ 1 fm.  

The m of the carrier can be calculated:  m ~ 250 me. (meson) 

Discovery of the pion (-meson) in 1947: m ~ 135 MeV/c2 (270 me) 

     (Cecil Frank Powell et al, Nobel-prize in 1950) 

nucleon-nucleon interaction electromagnetic interaction 
222 cpE   22222 mccpE 

Quantum mechanics 
222 - p

2

2
22

t
E




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0

0

rr

rr

-
-

--


mc

e
g

Yukawa nuclear interaction (contd.) 

Denote:  r-r0 → r (put the origin into point r0).  

From this the interaction energy: 

 
r

e
ggV

r
mc


-

- 2r

This is the Yukawa interaction in its 

simplest form.  

(Compare it to the „range”               )  

However, this is a „central” interaction! How to make is spin-

dependent and tensorial?  

Assume that the source of the field is not point-like, but dipole-

like meson field!   

          rrrrrr  ---


ggD
r

4lim4
0

Relate the direction of the nuclear „mesonic dipole 

charge” to the spin, as the only special direction:   sM  f

With that:  rM  -


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


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2
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r

e
r
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
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mc
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


M = g∙r – „mesonic dipole charge”  r 
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Yukawa nuclear interaction (contd.) 
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where                                  is the tensor interaction 
  

212

21
2,1

3
ss

rsrs
-

r
S

 Repulsion, not attraction!   

21 SSS    rSii rS

   2

2

2

1

2

21
2

1
SSS --SS

        111
2

1
221121 -- SSSSSSSS

Calculate for the deuteron:  

  0
4

1
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3

4

3
2

2

1
21 








--SS

Looks good, since it has 

•  short range             

•  spin dependency    

•  tensor force            
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Nuclear interaction 

Isospin and charge independency 

Charge independency means: the nuclear interactions is the same 

for p- p,   n- n  and n- p systems.  

Heisenberg/Wigner: the proton and the neutron are the same 

particle (nucleon), only an „internal” two-state quantum-

number is different. (Like e↑ and e↓ are both electrons, only 

the spin z - projection quantum number is opposite).  

There is another property of the nucleon-nucleon 

interaction which was not considered yet: 

charge independency! 

      rr 









0

1
 










1

0


This internal quantum number is called „isospin”.  

(It has nothing to do with the „normal spin”, and with the angular 

momentum, even it is not in the configuration space)  

, where                 for protons and                  for neutrons.   
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Isospin and charge independency (contd.) 

The isospin (vector) operator is denoted by T.  

It has 3 components: T1, T2, T3  (NOT Tx, Ty, Tz !!) 

The isospin algebra is the same as the spin-algebra, although the 

isospin acts in an abstract space.  

  kijkji TiTT ˆˆ,ˆ    0ˆ,ˆ
3

2 TT

The eigenvalues:                      and    1ˆ 2  TTT TmTmT TT -     where,ˆ
3

For protons              and neutrons            :  
2

1ˆ
3 T 

2

1ˆ
3 -T

Consequence of the new quantum number:  

The Pauli-principle → the whole wave function should be 

antisymmetric, including the new quantum number!   

The ladder (step) operators:  
0ˆ      ,ˆ

ˆ      ,0ˆ





--







TT

TT

21

21

ˆˆˆ

ˆˆˆ

TiTT

TiTT

-



-



where  











0

1
 










1

0


For nucleons:   
2

1
T

The commutation relations: 
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Isospin and charge independency (contd.) 

How to handle mathematically the exchange of particles? 

Suppose that originally the „1” particle is a proton, and the 

„2” is a neutron      21212121 ,,,,,,   ssttss rr

For the exchange we have to „turn” the first proton to neutron, and 

the second neutron into a proton :        2121 2ˆ 1ˆ  - TT

Note that                2ˆ1ˆ2ˆ1ˆ2ˆ1ˆ2ˆ1ˆ
2211 TTTTTTTT  --

Note also that this operator gives 0 for p-p  and n-n systems.  

To ensure the effect also on these symmetrical states,  

                 should be included. Finally we get:    2ˆ 1ˆ
33 TT

               2ˆ1ˆ2ˆ 1ˆ2ˆ 1ˆ2ˆ 1ˆ
332211 TT TTTTTT

However, this operator turns a 12 system into 0, thus this operator 

should be expanded to enable the exchange for both systems: 

        
         2121

2121

 2ˆ1ˆ2ˆ1ˆ

 2ˆ1ˆ2ˆ1ˆ









--

--

TTTT

TTTT

(scalar product)  

(for simplicity we will omit the  (r, s1, s2) part in the following)  
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Isospin and charge independency (contd.) 

 

 
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
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

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
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

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
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

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











-











--

r

emcmc

rr
Sr

r

emc
f

ttV

r
mc

r
mc





3

22,1

2

2121

2

2121

3

111
4

3

1

,,,,

ssTT

ssr

The isospin of the deuteron:  
21 TTT  , therefore  

    312
4

1

4

3

4

3
1

2

1
21 -








-- TTTTTTThe expectation value:  

 2

2

2

1

2

21
2

1
TTT --TT

Two possibilities:  









1,0     1

     0    0

T

T

M

M
T

For the deuteron S = 1, L = 0, 2 → symmetrical against particle 

exchange → the isospin must be antisymmetric → T = 0   

     2121212121
2

1
,,,,,,  - ssttss rr

Therefore the potential with charge-independency: 
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Physical meaning of the isospin:  

Isospin and charge independency (contd.) 

    NZiTT
A

i

- 
 2

1ˆˆ

1

33

Since every proton gives +1/2, every neutron gives -1/2.  

The Hamiltonian of the nucleus:  H = H0 + Ha , where   0,0 iTH

2

0
2

c
MM

AHHH
pn

Yukawakin


 since  Mn ≠ Mp   

22

22
c

MM
Zc

MM
NHH

nppn

Coulomba

-


-
 Clearly   0, ia TH

If Ha was not there, the isobars would have exactly the same 

structure, since exchange of protons and neutrons would not 

influence anything! 
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For mirror nuclei number of protons and neutrons are 

interchanged  

For example:         and   

Mirror nuclei 

6

11

5 B 5

11

6 C

The origin of E is the Ha term 

They are T = 1/2 isospin doublet 

 
2

1
65

2

1
    B 36

11

5 --T

 
2

1
56

2

1
    C 35

11

6 -T
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Isobar analogue states 

25

45

20Ca 24

45

21Sc 23

45

22Ti 22

45

23V 21

45

24Cr 20

45

25Mn

T3     -5/2    -3/2     -1/2    1/2     3/2    5/2                              

T    3/2                       

T    1/2                       

T    5/2                       

Isobar analogue states → they have the same T → their  

internal structure is similar 

A   const. 

(Weizsäcker)                      


