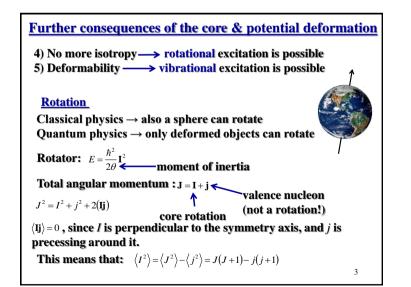
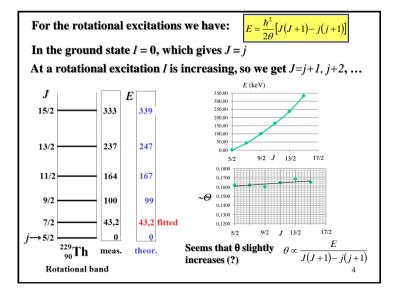
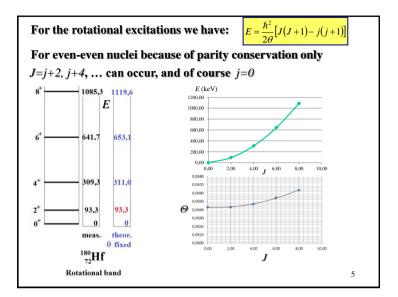
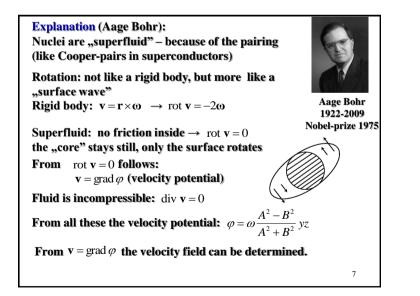

Nuclear Physics (10th lecture)

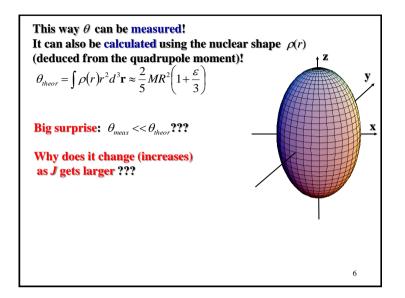

<u>Content</u>

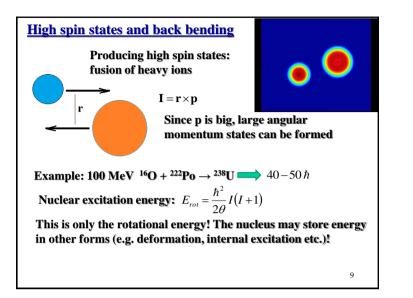

- Nuclear Collective Model: Rainwater approx. (reminder)
- Consequences of nuclear deformation
 - Rotational states
 - High spin states and back bending
 - $\circ \ \ \textbf{Vibrational states}$
 - Monopole, dipole and quadrupole vibrations,
 - Giant resonances, experimental observations

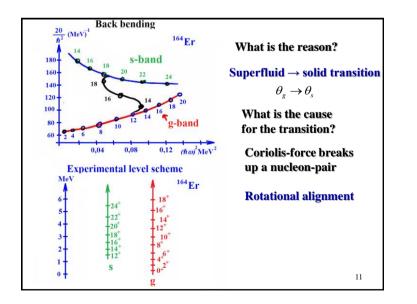
1

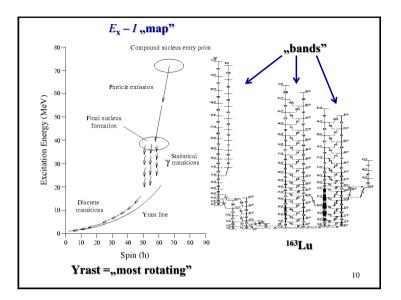


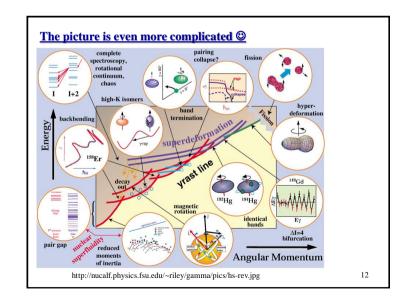

The nuclear collective model (contd.)




1







The angular momentum: $\mathbf{I} = \frac{M}{\hbar} \int \rho(r) [\mathbf{r} \times \mathbf{v}] d^3 \mathbf{r}$	
The rotational energy: $E = \frac{1}{2}M\int \rho(r)v^2 d^3\mathbf{r}$	
From these two $E = \frac{1}{2\theta}I^2 \rightarrow \theta$ can be calculated	
Result: $\theta_{wave} \propto \theta_{rigid} \varepsilon^2 << \theta_{rigid}$	
Aage Bohr, Ben Mottelson: $\theta_{wave} \le \theta_{final} \approx \theta_{observed} \le \theta_{rigid}$ good description, taking into account even the pair-corr	relation!
Nobel-prize 1975: A. Bohr, Mottelson, Rainwater "for the discovery of the connection between collectiv and particle motion in atomic nuclei and the development theory of the structure of the atomic nucleus based on t connection."	ent of the
	8

Vibration

It is convenient to give the instantaneous coordinate R(t) of a point on the nuclear surface at (θ, ϕ) in terms of the spherical harmonics ____λ

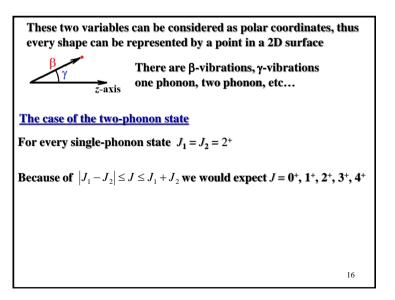
$$R(t) = R_0 + \sum_{\lambda} \sum_{\mu = -\lambda} \alpha_{\lambda\mu}(t) Y_{\lambda\mu}(\theta, \varphi)$$

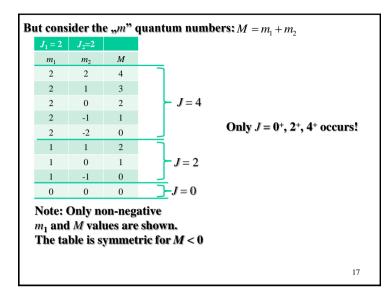
Due to reflection symmetry $\alpha_{\lambda\mu} = \alpha_{\lambda-\mu}$

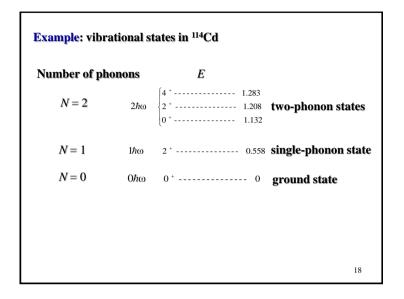
 $R = R_o$

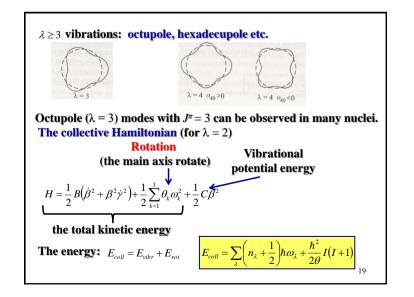
λ=0 vibration: monopole (GMR observed for A>40) (breathing mode of a compressible fluid) $E \approx 80 \cdot A^{-\frac{1}{3}}$ MeV

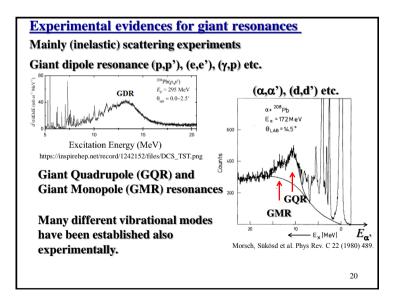
 $\lambda = 1$ vibration: dipole


 $R(t) = R_0 + \sum_{\mu=-1}^{1} \alpha_{1\mu}(t) Y_{1\mu}(\theta, \varphi) = R_0 + \alpha_{11}(t) Y_{11} + \alpha_{10}(t) Y_{10} + \alpha_{1, -1}(t) Y_{1, -1}$ $= R_0 + \alpha_{10}(t) Y_{10} = R_0 + \alpha_{10}(t) \frac{1}{2} \left(\frac{3}{2\pi}\right)^{3/2} \cos \theta$


because $\alpha_{1\mu}(t) = 0$ for $\mu \neq 0$ ($\alpha_{1,-1}(t) = \alpha_{11}(t)$ and $Y_{1,-1} = -Y_{11}$)


Giant dipole resonance (observed for A>16) $E \approx 77 \cdot A^{-\frac{1}{3}} \text{ MeV}_{13}$


$\lambda=2$ vibration: quadrupole
For a harmonic oscillation:
$H = \frac{1}{2}mv^{2} + \frac{1}{2}m\omega^{2}r^{2} = \frac{1}{2}B\sum_{\mu}\left \frac{d}{dt}\alpha_{2\mu}\right ^{2} + \frac{1}{2}C\sum_{\mu}\left \alpha_{2\mu}\right ^{2}$
$E_{N} = \left(N + \frac{5}{2}\right)\hbar\omega; \qquad \hbar\omega = \left(\frac{C}{B}\right)^{1/2}$
Orthogonal transformation to $\sum_{\mu=-2}^{2} \alpha_{2,\mu} Y_{2}^{\mu}(\theta, \varphi) = \sum_{\mu=-2}^{2} a_{2,\mu} Y(\theta', \varphi')$ get a diagonal form:
get a diagonal form: $\prod_{\mu=-2}^{2} 2, \mu = 2$
$a_{2,1} = a_{2,-1} = 0 \qquad a_{2,2} = a_{2,-2}$
$\sum_{\mu=-2}^{2} \left \alpha_{2,\mu} \right ^{2} = \sum_{\mu=-2}^{2} \left a_{2,\mu} \right ^{2} = \beta^{2}$
Commonly new variables are introduced: $a_{2,0} = \beta \cos \gamma$, $a_{2,2} = \frac{1}{\sqrt{2}} \beta \sin \gamma$
The three main axis ($k = 1, 2, 3$) of the
ellipsoid are then: $R_k - R_0 = \sqrt{\frac{5}{4\pi}R_0\beta\cos\left(\gamma - \frac{2\pi}{3}k\right)}_{15}$


$\lambda = 2$ vibration: quadrupole	
$R(t) = R_0 + \sum_{n=1}^{2} \alpha_{1\mu}(t) Y_{2\mu}(\theta, \varphi) = R_0 + \alpha_{22} Y_{22} + \alpha_{21} Y_{21} + \alpha_{20} Y_{20} + \alpha_{21} Y_{21} + \alpha_{2, -2} Y_{2, -2}$	
$= R_0 + \alpha_{20}(t) \cdot Y_{20} = R_0 + \alpha_{20}(t) \frac{1}{4} \left(\frac{5}{\pi}\right)^{1/2} (3\cos^2\theta - 1)$	
because $\alpha_{2\mu} = 0$ for $\mu \neq 0$ (using appropriate coord. sys.) (for ellipsoidal shape, <i>R</i> is a function of only θ)	
The shape of the surface can be described by $Y_2^{\mu}(\theta, \varphi)$ $\mu = \pm 2, \pm 1, 0$. In the case of an ellipsoid $R = R(\theta)$ hence $\mu = 0$.	
Quantization of quadrupole vibration is called a quadrupole phonon, $J^{\pi} = 2^+$. This mode is dominant.	
For most even-even nuclei, a low lying state with $J^{\pi} = 2^+$ exists and near closed shells second harmonic states can be seen	
$J^{\pi} = 0^+, 2^+, 4^+.$	
Giant quadrupole resonance (observed for A>16) $E \approx 63 \cdot A^{-\frac{1}{3}} \text{ MeV}_{14}$	

