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Nuclear Physics  

(10th lecture) 
Content 

• Nuclear Collective Model: Rainwater approx. (reminder) 

•  Consequences of nuclear deformation 

o Rotational states 

 High spin states and back bending 

o Vibrational states 

 Monopole, dipole and quadrupole vibrations,  

 Giant resonances, experimental observations  
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Rainwater approximation  (reminder) 

„Marriage” of the liquid drop model and the shell model.  

Concept:  nucleus = core + valence nucleon(s) 

deformable 

liquid drop  
shell model 

Consequence #2: Nuclear quadrupole moment: 

Here S is the „rigidity” of the core, and QN is the 

quadrupole moment of the valence nucleon 
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Consequence #3: Nilsson-scheme 

of shell-model levels 

Better description of (deformed) 

ground-state properties 

The  nuclear collective model (contd.) 

Consequence #1:  Some nuclei are deformed also in ground state.   
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Further consequences of the core & potential deformation 

4) No more isotropy         rotational excitation is possible 

5) Deformability             vibrational excitation is possible 

Rotation  

Classical physics → also a sphere can rotate 

Quantum physics → only deformed objects can rotate  

Total angular momentum :   jIJ 

core rotation  

valence nucleon 

(not a rotation!) 

Rotator:   2
2

2
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 Ij2222  jIJ

This means that:  

          , since I is perpendicular to the symmetry axis, and j is 

precessing around it.    

0Ij

   11222  jjJJjJI

moment of inertia   
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For the rotational excitations we have:       11
2

2

 jjJJE




In the ground state I = 0, which gives J = j   

At a rotational excitation I is increasing, so we get J=j+1, j+2, … 
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For the rotational excitations we have:       11
2

2

 jjJJE




For even-even nuclei because of parity conservation only 

J=j+2, j+4, … can occur, and of course  j=0  
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This way   can be measured! 

It can also be calculated using the nuclear shape  r(r)  

(deduced from the quadrupole moment)! 

theormeas  Big surprise:                       ???      
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Why does it change (increases)  

 as J gets larger ???      
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Explanation (Aage Bohr):  

Nuclei are „superfluid” – because of the pairing  

(like Cooper-pairs in superconductors) 

Rotation: not like a rigid body, but more  like a 

„surface wave” 

Rigid body:                   →    ωrv 

Superfluid:  no friction inside → 

the „core” stays still, only the surface rotates 

0rot  v

0rot vFrom                   follows:   

gradv

Fluid is incompressible:   0 div v

From all these the velocity potential:    yz
BA

BA
22

22




 

From                   the velocity field can be determined.   gradv

ωv 2rot  Aage Bohr 

1922-2009 

Nobel-prize 1975 

(velocity potential) 
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The angular momentum:       rvrI
3dr

M
r


The rotational energy:     r

32

2

1
drME vr

From these two                     →    can be calculated   2

2

1
IE




Result:  
rigidrigidwave   2

Aage Bohr, Ben Mottelson:  

good description, taking into account even the pair-correlation!  
rigidobservedfinalwave  

„…for the discovery of the connection between collective motion 

and particle motion in atomic nuclei and the development of the 

theory of the structure of the atomic nucleus based on this 

connection.” 

Nobel-prize 1975:  A. Bohr, Mottelson, Rainwater 
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High spin states and back bending 

prI 

Since p is big, large angular 

momentum states can be formed 

Example: 100 MeV  16O + 222Po → 238U  5040 

 1
2

2

 IIErot




This is only the rotational energy! The nucleus may store energy 

in other forms (e.g. deformation, internal excitation etc.)!   

Nuclear excitation energy:  

Producing high spin states:   

fusion of heavy ions 
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163Lu 

„bands”  

Yrast =„most rotating”  

Ex – I „map” 
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What is the reason? 

Superfluid → solid transition 

What is the cause 

for the transition?  

Coriolis-force breaks 

up a nucleon-pair 

 

Rotational alignment  

sg  
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The picture is even more complicated  

http://nucalf.physics.fsu.edu/~riley/gamma/pics/hs-rev.jpg 
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Vibration  
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=0 vibration:  monopole  (GMR observed for A>40) 
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It is convenient to give the instantaneous coordinate R(t) of a 

point on the nuclear surface at (, ) in terms of the spherical 

harmonics 

Giant dipole resonance (observed for A>16)  14   

=2 vibration:  quadrupole 
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The shape of the surface can be described by  

m = ±2, ±1, 0. In the case of an ellipsoid R = R(θ) hence m = 0. 

 m ,2Y

Quantization of quadrupole vibration is called a quadrupole 

phonon, Jπ =2+. This mode is dominant.  

For most even-even nuclei, a low lying state with Jπ = 2+ exists 

and near closed shells second harmonic states can be seen  

Jπ = 0+, 2+, 4+. 

Giant quadrupole resonance (observed for A>16) 

because 2m = 0 for m ≠ 0 (using appropriate coord. sys.) 

(for ellipsoidal shape, R is a function of only  )  
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=2 vibration:  quadrupole 

For a harmonic oscillation:  

Orthogonal transformation to 

get a diagonal form:  
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Commonly new variables are introduced:                   ,   cos0,2 a  sin
2
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Because of                                    we would expect J = 0+, 1+, 2+, 3+, 4+ 

These two variables can be considered as polar coordinates, thus 

every shape can be represented by a point in a 2D surface  

There are -vibrations, -vibrations 

one phonon, two phonon, etc…  

    The case of the two-phonon state 
                    

For every single-phonon state  J1 = J2 = 2+  

                    

2121 JJJJJ 

http://sukjaro.eu/SCsaba/GiantResonances/GiantResonances.htm
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But consider the „m” quantum numbers:   

J1 = 2 J2=2 

m1 m2 M 

2 2 4 

2 1 3 

2 0 2 

2 -1 1 

2 -2 0 

1 1 2 

1 0 1 

1 -1 0 

0 0 0 

J = 4 

J = 2 

J = 0 

Note: Only non-negative  

m1 and M values are shown.  

The table is symmetric for M < 0  

21 mmM 

Only J = 0+, 2+, 4+ occurs!   
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Number of phonons                   E                                                                  





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


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

1.132     ---------------  0

1.208    ---------------  2

1.283    ---------------  4

      ω2

0.558    ---------------  2          ω1      single-phonon state 
                    

0    ---------------  0         ω0   ground state 

N = 2 

N = 1 

N = 0 

Example: vibrational states in 114Cd  

    two-phonon states 
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 vibrations:  octupole, hexadecupole etc. 3

Octupole (λ = 3) modes with Jπ = 3 can be observed in many nuclei.  

The collective Hamiltonian (for  = 2) 
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Rotation  

(the main axis rotate) 

the total kinetic energy  

Vibrational 

potential energy 

The energy:  
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Giant dipole resonance (p,p’), (e,e’), (,p) etc. 

https://inspirehep.net/record/1242152/files/DCS_TST.png 

Morsch, Sükösd et al. Phys Rev. C 22 (1980) 489. 

GMR 

GQR 

Giant Quadrupole (GQR) and  

Giant Monopole (GMR) resonances  

Many different vibrational modes 

have been established also 

experimentally. 

Experimental evidences for giant resonances  

Mainly (inelastic) scattering experiments 

(,’), (d,d’) etc. 

E’ 


