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Nuclear Physics  

(9th lecture) 
Content 

• The nuclear shell model (contd.) 

• The successes and failures of the nuclear shell model 

o Nuclear spin and parity 

o Nuclear magnetic moments 

o Nuclear quadrupole moments 

• Nuclear models #4: The nuclear collective model 

• Rainwater approximation 

• Consequences of nuclear deformation 

o Nilsson-schemes 
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The nuclear shell model (contd.) 

1st case: the infinite well potential 

Magic numbers:  

2, 8, 20, 28, 50, 82, 126  
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kR 2·(2l+1) Sum 

p l = 0 (1s) 2 2 

4,49 l = 1 (2p) 6 8 

5,79 l = 2 (3d) 10 18 

2p l = 0 (2s) 2 20 

6,99 l = 3 (4f) 14 34 

7,22 l = 1 (3p) 6 40 
  ?  

2 

8 

20 

The first 3 magic 

numbers are 

okay, but the 

rest?  

We assumed spherical central potential 
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nr - radial quantum number  

l - orbital quantum number 

m - magnetic quantum number 
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n p (n+1)(n+2) nr l 2·(2l+1) 

0  2 0 0 1s 2 

1  6 0 1 2p 6 

2  12 1 0 2s 2 

0 2 3d 10 

3  20 1 1 3p 6 

0 3 4f 14 

4  30 2 0 3s 2 

1 2 4d 10 

0 4 5g 18 
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The nuclear shell model (contd.) 

lnn r  2

Descartes  spherical  
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Magic numbers:  

2, 8, 20, 28, 50, 82, 126  

The harmonic oscillator can describe only the first 3 

magic numbers. Something more should be included!    

2nd case: the harmonic oscillator potential   22
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The nuclear shell model (contd.) Magic numbers:  

2, 8, 20, 28, 50, 82, 126  
3rd case: the Saxon-Woods potential 
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Analytical solution of the Schrödinger 

equation is not possible. Numerical 

solutions show that the harmonic 

oscillator levels separate according to 

the l quantum number.   

Saxon-Woods is  

„somewhere in between”  

The magic numbers cannot be explained! 

Something else is needed!  
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E.P. Wigner, M. Goeppert-Mayer, H. Jensen (Nobel-prize 1963)  

There should be a spin-orbit interaction term!  

The nuclear shell model (contd.) 
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The total angular momentum:  SLJ 

LS 2222 SLJ from where:   222
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The eigenvalue of the LS operator        111
2

1
 sslljj

Since            and                   
2

1
s

2

1
 jl

the eigenvalue of the LS operator  


































2

1
 if ,

2

1

2

1

2

1
 if ,

2

3

2

1

ljj

ljj

If the VLS(r) potential is attractive, then j = l+1/2 state gets lower 

energy and the j = l1/2 state gets higher energy.  

Degeneration gets split!  

 6   

The nuclear shell model 

In nuclear physics the notation of the states is NOT according to 

the n „main” quantum number like in atomic physics  

(since the main quantum number depends on the potential),  

but on the nr „radial” quantum number  

Example: 

2
5

d1

nr+1 l=2 

j=5/2 
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Remember: 

these are the 3 „natural” quantum numbers 
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n 

2j+1 

Energy 

Magic numbers 
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The nuclear shell model 

Excited states: 

• Simple case: even-even core + one particle (p or n) outside the 

core. The proton and neutron potentials are slightly different 

(Coulomb potential). Single-particle excitation energies 

reasonably well described.  

 

• More complicated case: odd-odd nucleus → two particles 

(1n,1p)  outside the core.  The residual interaction between the 

unpaired neutron and proton should also be taken into 

consideration.   
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The nuclear shell model 

Nuclear spin and parity (ground state): 

• Even-even nuclei: I = 0, p = + (because of the pairing)  

• Even-odd nuclei:  I = j (the angular momentum of the unpaired) 

                              p = (-1)l   

• Odd-odd nuclei:  

the coupling between  

the two unpaired nucleon  

should also be taken  

into account.  

1/2(-) 
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Remember:  

Dipole magnetic moments can be originated from two sources: 

• „revolving” charge (e.g. protons on l > 0 orbits)   

• Nucleons have „intrinsic” magnetic moments: 

ms(p) =   2,7928456 mN 

ms(n) = 1,91304185 mN,  

where mN  is the „nuclear magneton”. 

The nuclear shell model (contd.) 

Nuclear magnetic moments: 

In general:                      g is the „gyromagnetic factor” Ng m Jμ

T

eV
 101525,3
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Problem: 

Since in general            , therefore m and j are not parallel!  sl gg 

Only the projection of m on j can be measured!  
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Nuclear magnetic moments (contd.) 

From the previous:  
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1

proton neutron 

gl 1 0 

gs 5,586 3,826 

Four cases:  

unpaired 

proton 

unpaired 

neutron 

j = l+1/2 j = l+1/2 

j = l1/2 j = l1/2 

22 j
g

j
gg slj

sjlj
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Nuclear magnetic moments (contd.) 

unpaired neutron 

unpaired proton 

„Schmidt lines” 

The Schmidt-lines – originating from the shell model – are the 

limiting values. → The shell model is an extreme approximation.   



4 

 13   

The nuclear shell model (contd.) 

Nuclear quadrupole moments 

The quadrupole moment of the unpaired proton:    
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For a „proton hole”:    
pp QQ 

Experimental fact:                      

(sometimes even a factor of 30)!  
pQQ exp

Nuclide 

 

Z 

 

N 

 

Character 

 

Qexp 
[mb] 

QSM 

[mb] 

Ratio 

 

17O 8 9 
+1 neutron  

j = 5/2 
26 33    0.8  

39K 19 20 
 1 proton  

j = 3/2 
+55 +40    1.4  

175Lu 71 104 
mid shell  

j = 7/2 
+5600 180 31.1  

209Bi 83 126 
+1 proton  

j = 9/2 
350 221    1.6  

  jjjjp YrrzQ  ,3 0

2

222 
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The nuclear shell model (contd.) 

Nuclear quadrupole moments 

Between magic numbers the quadrupole moments can be really 

high → the shell model can not explain that.    

http://hyperphysics.phy-astr.gsu.edu/hbase/nuclear/imgnuc/quadrupole.gif 

Quadrupole measurements for odd-A 

nuclei. The horizontal axis is either 

neutron number or proton number, 

whichever is odd 

 

For a shell model, those nuclei with closed 

shells should be spherically symmetric 

and have no quadrupole moment    
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Nuclear models #4:  

The  nuclear collective model 

1) Indications 

We have seen that the shell model cannot explain some 

observations:  

• Nuclei between the closed shells have quadrupole moments 

even in the ground state.  

• How can the ground state nuclear quadrupole moments be 

much larger than predicted by the shell model?  

• Why are the magnetic moments differing from the Schmidt-

lines? 

• ..etc. 
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2) There were some simplification in the single-particle shell model: 

The nuclear Hamiltonian:  

single-particle 

operators 
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„mean” nuclear 

potential 

Assumption was: the shape of the „mean” nuclear potential is… 

• …central → depends only on the absolute value of ri: V(ri) (true?) 

• …similar shape as the nuclear density (since the nucleons create 

it). Is that necessarily spherical?  

Possible solution:   

• Keep the assumption that the shape is similar to the shape of the 

nuclear density (since the potential originates from the nucleons) 

• Allow the nuclear density to be deformed           potential gets 

also deformed 

• Keep the nuclear volume constant (incompressible fluid) 
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How to determine the deformation?  

Nuclear density 

r(r) 

Nuclear 

potential 

V(r) 

Determine Y 

by minimizing 

the energy 

<Y|H|Y> 

|Y(r)|2 

„Hartree-Fock (Bogoliubov) method” 

It converges only slowly (if converging at all) for many particles. 

Slow, difficult and cumbersome calculations (antisymmetrizing, 

pairing, etc.) 

Note: „r” is a vector, 

it depends on the 

direction as well! 

 ,,rr

Iterative approach:   
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Rainwater approximation 

Leo James Rainwater  

(1917-1986) 

Nobel-prize 1975  

„Marriage” of the liquid drop model  

and the shell model.  

Concept:  nucleus = core + valence nucleon(s) 

deformable 

liquid drop  

shell model 

Core 

r(r) 

Nuclear 

potential V(r) 

Nucleon energy 

variation by 

perturbation 

Nucleon 

deforms  

the core 

Energy 

minimisation 
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The potential is originally spherical, but it gets 

also deformed:                      ,  

where   

Rainwater approximation (contd.) 

Simplest case:  

• Only one nucleon outside the core 

• The core can be deformed to ellipsoid 

• Volume conserved:   

y 

x 

z 

BAR 23

3

4

3

4 pp


For small deformations:  
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The perturbed potential:  

      (to the first order) 
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Rainwater approximation (contd.) 

The total energy of the nucleus  NC EEE 

core  valence nucleon 

a) The unperturbed core is spherical: 

where                  is the „rigidity” of the core.  
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b) The perturbed energy of the valence nucleon: 
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Here  is the unperturbed wave function:  
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The „mass” quadrupole moment of the nucleon:   
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Note that the sign of the deformation is the same as the sign of QN: 

The nucleon „attracts” the core, and deforms it.  
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The total quadrupole moment of the nucleus:   NC QQQ 

If we know the , the electric quadrupole moment of the core can 

be calculated:   

Using                       we get 0
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Q>>QN is possible for small S („soft” core, easily deformable) 

Few examples:  

126

209

83Bi doubly magic core (rigid) + 1 proton:  1
N

meas

Q

Q

48

85

37Rb b 31,0Q
50

87

37Rb b 14,0Q (magic number of neutrons)  

17

33

16S b 06,0Q 19

35

16S b 04,0Q
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Consequences of core deformation (and potential deformation) 

1) Nilsson level schemes 

The degenerated levels split with 

deformation           magic 

numbers may change! 

2) This gives a better description 

for the nuclear spins and parity  


