Nuclear Physics
(9t lecture)
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The nuclear shell model (contd.) Magic numbers:
We assumed spherical central potential 2. 8, 20, 28, 50, 82, 126

4 ( ) n,=0123.. 0, - radial quantum number
Vorn(l8,0)=""2Y"(3.0) > {1 =0123.. |-orbital quantum number
-l<m<+ m - magnetic quantum number

The nuclear shell model (contd.) Magic numbers:
2, 8,20, 28,50, 82, 126

2" case: the harmonic oscillator potential V(r)=-V, +1 mea?r?
Descartes spherical 2
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The harmonic oscillator can describe only_fhe first3
magic numbers. Something more should be included!

1%t case: the infinite well potential V(r)= {_Vm if r<R,
kznf_ZM(\/ E ) oo,if r>R
TR
-- ¢n“e,(r) =j (kn,,fr) Energy levels in nfinite well
n  1=0(1) 2 ::2 3 a0
449 1=1(2p) 6 8 8 The first 3 magic s ®
579 1=2(3d) 10 18 numbers are 5;;‘ >
2n 1=0(29) 2 20 20 Okay,but the s
699 l=3@n__14 34 rest? *
7,22 1=1(3p) 6 40 T 1s
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The nuclear shell model (contd.) Magic numbers:
31 case: the Saxon-Woods potential 2,8, 20,28, 50, 82, 126
V(r)=-V,—%
0 l+e?
Saxon-Woods is
" s L»somewhere in between”
" A0y 40
19 — 3p
R Ea T 0 |
Analytical solution of the Schrédinger = 2s
equation is not possible. Numerical 5, 1
solutions show that the harmonic 2
oscillator levels separate according to an G
the I quantum number.
The magic numbers cannot be explained! v ko
harmonic infinite

Something else is needed! oscillator well




The nuclear shell model (contd.)

E.P. Wigner, M. Goeppert-Mayer, H. Jensen (Nobel-prize 1963)
There should be a spin-orbit interaction term!

(_Z;A+v(r)+jw(r~97 9)=E-p(r.9.9)

The total angular momentum: J=L+S
J?=1"+S*+2:LS from where: LS :%(J2 -12-5?)

The eigenvalue of the LS operator = %(j(j +1)-1(1+1)-s(s +1))

1(. 3) .. 1
_E[HE)'W j=|—§
the eigenvalue of the LS operator = 1 1 1

+§( ] if j=1+

Since s:1 and | = ji1
2 2

Degeneration gets split! ] ) 2
If the V,4(r) potential is attractive, then j = I+1/2 state gets lower
energy and the j = I-1/2 state gets higher energy. 5

The nuclear shell model
4 (1) =01,2,3...
Remember: v, ,.(r.9.¢0)="-"-Y"(3,¢) > {1)=0123..

' NEQR

these are the 3 ,,natural” quantum numbers

In nuclear physics the notation of the states is NOT according to
the n ,,main” quantum number like in atomic physics

(since the main quantum number depends on the potential),

but on the n, ,radial” quantum number

Example:
/ j=5/12
1072
N
n+1 I=2

r

m 25+

: Is.3d.2g 1i . ) Energy

Magic numbers

: 126

1] = 2 9

Harmonic  Syxon-Woods With LS
oscillator coupling

The nuclear shell model

Excited states:

« Simple case: even-even core + one particle (p or n) outside the
core. The proton and neutron potentials are slightly different
(Coulomb potential). Single-particle excitation energies
reasonably well described.

* More complicated case: odd-odd nucleus — two particles
(1n,1p) outside the core. The residual interaction between the
unpaired neutron and proton should also be taken into
consideration.




The nuclear shell model

Nuclear spin and parity (ground state):

» Even-even nuclei: I =0, 7=+ (because of the pairing)
» Even-odd nuclei: I'=j (the angular momentum of the unpaired)

r=(-1)

+ Odd-odd nuclei: ks T oo oot g | oo™
the coupling between (parity) (parity)
the two unpaired nucleon | "' 5 |ehoe ooy [ 30
should also be taken e 7 fnnoe po) | w26
into account. N 7 |eroe po(0) | 120

70 9 n-particle,g (4 5/2(+)
K 19 |p-hole, g1y 3124
%o 27 p-hole fL (=) | 7209
87sr 49 n-hole, g . (+) 9/2(+)
207pp 125 |n-hole, p,,.(-) 1/2()
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Nuclear magnetic moments (contd.)

From the previous: g; =g, %+gs%
The usualltrick: from j=I+s we get Ij:%(j2+|2—sz)
and sj=5(j2+sz—|2)

Using these g, =g, i +1)+1(1 +1)—s(s+1)Jr j(j+1)+s(s+1)-1(+1)

2i(i+1) I
Since j:l% we get g,=[gliﬁ(gs—gl)j
and 4 = j(g. iﬁ(gs —g.)JuN
m=
zl 5,5186 _3;26 Four cases: j 12 =142

j=l12  j=1-e

1

The nuclear shell model (contd.)
Nuclear magnetic moments:

Remember: In general:lp =0-J- 1| g is the ,gyromagnetic factor”
Dipole magnetic moments can be originated from two sources:

« ,revolving” charge (e.g. protons on | > 0 orbits) p, =g,lx,

* Nucleons have ,intrinsic” magnetic moments: p =gy,
u(p) = 2,7928456 uy
u(n) =—1,91304185 g, o.h
where g, is the ,nuclear magneton”. gy, = ETYI 31525-10

s €V

Problem: p=p, +p,=g/l+95#09;j ’

Since in general g, # g,, therefore p and j are not parallel!
Only the projection of p on j can be measured!

j 1j sj
Hes :? :[gl Tj+gs TjjluN

and the direction: p, =9;juy =(g, ij+gs STJ]%

N
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Nuclear magnetic moments (contd.)

»Schmidt lines”
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The Schmidt-lines — originating from the shell model — are the
limiting values. — The shell model is an extreme approximation.
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The nuclear shell model (contd.)
Nuclear quadrupole moments  Q, =(y[32°—r’|w,) = (w|rY,(%.0)v;)

The quadrupole moment of the unpaired proton:

2i_1 2j-13 2j-1
Qp:<‘//1‘322_r2“//i>:_m<wi‘r ‘V/1> 2JJ+2 5RZ ZJJ

For a ,,proton hole”: Q,=-Q,

A3 8,64 [mb]

Experimental fact: |Q.,|>>(Q,|
(sometimes even a factor of 30)!
Nuclide Character | Q&P Ratio = oy ™ .
[mb] -
I
+1 neutron
9 Tilsp 26 -3 08© Q>0 Q<0
s 19 20 TLPOON o 0 14@
j=32
wsLy 71 104 Mdshelloen0 180 —311®
j=712
209Ri +lproton N
Bi 83 126 T, 350 221 16© 13

The nuclear shell model (contd.)
Nuclear guadrupole moments

0.3
Quadrupole measurements for odd-A

nuclei. The horizontal axis is either
02 neutron number or proton number,
whichever is odd

01
For a shell model, those nuclei with closed

[hﬂ A shells should be spherically symmetric
0.0 “ W] NN and have no quadrupole moment
8

Reduced Quadrupole Moment

28 82 126
Y

P
0. EEI lﬂ 60 80 100 12[) 14[’

http://hyperphysics.phy-astr.gsu.edu/hbase/nuclear/imgnuc/quadrupole.gif

Between magic numbers the quadrupole moments can be really
high — the shell model can not explain that.
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Nuclear models #4:
The nuclear collective model

1) Indications

We have seen that the shell model cannot explain some

observations:

* Nuclei between the closed shells have quadrupole moments
even in the ground state.

* How can the ground state nuclear quadrupole moments be
much larger than predicted by the shell model?

« Why are the magnetic moments differing from the Schmidt-
lines?

« etc.
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2) There were some simplification in the single-particle shell model:

The nuclear Hamiltonian: H = Z[—A +V(r, )J

i=1 m|
single-particle ,mean” nuclear
operators potential
Assumption was: the shape of the ,,mean” nuclear potential is...
« ...central — depends only on the absolute value of r;: V(r;) (true?)
* ...similar shape as the nuclear density (since the nucleons create
it). Is that necessarily spherical?
Possible solution:
+ Keep the assumption that the shape is similar to the shape of the
nuclear density (since the potential originates from the nucleons)
« Allow the nuclear density to be deformedl:> potential gets
also deformed

» Keep the nuclear volume constant (incompressible fluid)
16




How to determine the deformation? Rainwater approximation

»Hartree-Fock (Bogoliubov) method” »Marriage” of the liquid drop model
and the shell model.
. Nuclear
. : = core +
Iterative approach: Nuclear density Setntial Concept: nucleus = core + valence nucleon(s)
p(r) - ) 4
Note: ,,r” is a vector, deformable  shell model Leo Jalngale; Fllgii;gwatef
it depends on the liquid drop Nolatorie 1018
direction as well! Determine ¥ Nuclear
r=(r,%9)

by minimizin
()P . J

potential V(r)
the energy

It converges only slowly (if converging at all) for many particles.

e . . . Nucleon Nucleon energy

Slow, difficult and cumbersome calculations (antisymmetrizing, _Energy - variation by

pairing, etc.) TS 0o the core perturbation
17

A N R . - . N :_E.dl.r(3m529_l)
Rainwater approximation (contd.) Rainwater approximation (contd.) 3 dr
Simplest case:

The total energy of the nucleus E=E.+E,

>~

core valence nucleon
a) The unperturbed core is spherical: E.=EY +%s .
2
where 5_° Ezc is the ,,rigidity” of the core.
&

« Only one nucleon outside the core
* The core can be deformed to ellipsoid
+ Volume conserved: 4?” R = 4?” AZB

) A= R[lﬁg)
For small deformations: 3
2

B= R[1+§gJ

0

b) The perturbed energy of the valence nucleon:
The potential is originally spherical, but it gets E, =EY +[dﬂ) e+..=EV +EY
also deformed: v(r)—>Vv(r(9) , ) dz Jo
where (g)- r[1+§(3cosz 371)} == r(s)[l—g(Scosz 3—1)} % =[y'ovy-d°r  (perturbation theory)
o ~ | % — ‘%(r) m
The perturbed potential: sv(r)=v(r)-v(r)= _%TTV' r(3cos” 9-1) Here yis the unpe:turbezdd:/vave iur:ction. A
(to the first order) r Therefore & =~ [la(r|’ _-r-dr[¥["(3cos” 9-1)-d2

Note: since |v|"is density, its dimension is |m~|.

19 = The dimension of |«()’ is [n].

20




(r?) = [|(r)’ rr

We get £V = -Zv,|2(R)R Q _ .,

s (r*)

{r’)

Qu

(r’)

The energy of the nucleus: E=g.+E, =Y +%s e EY

AE :%s -0, This has a minimum, if

v(r) ’__/”_ 5E(N”:—g'ﬂs)ﬁ(rfZ—Yr-drﬂY\z@cosz9—1)-dQ
iy
4—/” R thereforei—\: =V,-8(r-R) —> J.\!/E(r]z ?T\: r-dr zvo\r/z(Rf R
av ooy
dr | "‘ The ,,mass” quadrupole moment of the nucleon:
‘ J I"\ JQ :Iw*rz(Scosz.9—1)//-d3r:ﬂyﬁ(r]zrzdr'ﬂY\z(Scosz.9—1)-dQ

2
where U, :VOM

U, Q

s {7)

&

Note that the sign of the deformation is the same as the sign of Qy:
The nucleon ,attracts” the core, and deforms it. 21

The total quadrupole moment of the nucleus: Q=Q. +Q,

If we know the ¢, the electric quadrupole moment of the core can
be caleulated: _ = [ p-r*(3cos*-1)4*r where pis the proton-density.

i Az 3z o(r) 4
Using z=-=A?Bp, We get = 2% (3cos?~1)d3r ~ = ZR?
g z="FABp Weget Q= oo f| 28 recos’-r~ SzR

i lo=|1.42R Uy
Finally we have: |Q [h 5[ 5 ]QN
Q>>Q, is possible for small S (,,soft” core, easily deformable)
Few examples:

2Bi,,, doubly magic core (rigid) + 1 proton: %zl
N
Rb,,—>Q=031b ¥ Rb,,—>Q=014b(magic number of neutrons)
85, —>Q=-0,06b 1S,;—>Q=+0,04b

4 —a "
sli’! -9 sh’Z -0
81 £
d*’-essses g -sseses 22

1) Nilsson level schemes

The degenerated levels split with
deformation —> magic
numbers may change!

2) This gives a better description
for the nuclear spins and parity

Fi

Neutron single-particle levels (MeV)

Consequences of core deformation (and potential deformation)

e ] oo o
e

Fiur & Mleson diagram fox protons of neutrons. or N < 80 f = 0




