

<u>Th</u>	<u>e n</u>	uclear shel	Magic numbers: 2, 8, 20, 28, 50, 82, 126							
<u>2nd</u>	¹ ca De	<u>se: the harı</u> scartes	<u>monic oscillator potential</u> spherical				$\mathbf{ntial} V(r) = -V_0 + \frac{1}{2}m\omega^2 r^2$			
n	π	(<i>n</i> +1)(<i>n</i> +2)	n_r			2.(21+1)	$\int \psi_n(-\mathbf{r}) = (-1)^n \psi_n(\mathbf{r})$			
0	+	2	0	0	1s	2	$2 \odot$			
1	-	6	0	1	2p	6	2g = (n+1)(n+2)			
2	+	12	1	0	2s	2	-89			
			0	2	3d	10	200			
3	-	20	1	1	3p	6	$n = 2n_r + l$			
			0	3	4f	14	408			
4	+	30	2	0	3s	2	-100			
			1	2	4d	10				
			0	4	5g	18	708			
The harmonic oscillator can describe only the first 3 magic numbers. Something more should be included!										

The nuclear shell model

Excited states:

- Simple case: even-even core + one particle (p or n) outside the core. The proton and neutron potentials are slightly different (Coulomb potential). Single-particle excitation energies reasonably well described.
- More complicated case: odd-odd nucleus → two particles (1n,1p) outside the core. The residual interaction between the unpaired neutron and proton should also be taken into consideration.

8

The nuclear shell model Nuclear spin and parity (ground state): Even-even nuclei: I = 0, $\pi = +$ (because of the pairing) • Even-odd nuclei: I = i (the angular momentum of the unpaired) $\pi = (-1)^{l}$ Nucleus No. of odd Predicted Observed Odd-odd nuclei: configuration and particles spin & (parity) (parity) the coupling between ¹¹B the two unpaired nucleon p-hole, $p_{3/2}(-)$ 3/2(-) 5 13C should also be taken 7 n-hole, $p_{1/2}(-)$ 1/2(-) ¹⁵N into account. 7 p-hole, $p_{1/2}(-)$ 1/2(-) ¹⁷O $\frac{1}{1-\text{ particle}} d_{5/2}(+)$ 9 5/2(+) ³⁹K 19 3/2(+) p-hole, $d_{3/2}(+)$ ⁵⁹Co 27 p-hole, $f_{7/2}(-)$ 7/2(-) ⁸⁷Sr 49 9/2(+) n-hole, $g_{9/2}(+)$ ²⁰⁷Pb 125 n-hole, $p_{1/2}(-)$ 1/2(-) 9

Nuclear magnetic moments (contd.)													
From the previous: $g_j = g_l \frac{\mathbf{lj}}{j^2} + g_s \frac{\mathbf{sj}}{j^2}$													
The usual trick: from $\mathbf{j} = \mathbf{l} + \mathbf{s}$ we get $\mathbf{l}\mathbf{j} = \frac{1}{2}(j^2 + l^2 - s^2)$													
and $sj = \frac{1}{2}(j^2 + s^2 - l^2)$													
Using these $g_j = g_1 \frac{j(j+1) + l(l+1) - s(s+1)}{2j(j+1)} + g_s \frac{j(j+1) + s(s+1) - l(l+1)}{2j(j+1)}$													
Since $j = l \pm \frac{1}{2}$ we get $g_j = \left(g_l \pm \frac{1}{2l+1}(g_s - g_l)\right)$													
and $\mu_{eff} = j \left(g_1 \pm \frac{1}{2l+1} (g_s - g_1) \right) \mu_N$													
	proton	neutron		unpaired	unpaired								
g_l	1	0	Four cases:	i = l + 1/2	i = l + 1/2								
$g_{\rm s}$	5,586	-3,826		j = l + 1/2 i = l - 1/2	j = l + 1/2 i = l - 1/2								
				<i>j</i> . <i>1/2</i>	J . 1/2								
						11							
						11							

The nuclear shell model (contd.) Nuclear magnetic moments: Remember: In general: $\mu = g \cdot \mathbf{J} \cdot \mu_N$ g is the "gyromagnetic factor" Dipole magnetic moments can be originated from two sources: • "revolving" charge (e.g. protons on l > 0 orbits) $\mu_l = g_l \mu_N$ • Nucleons have "intrinsic" magnetic moments: $\mu_s = g_s s \mu_N$ $\mu_s(\mathbf{p}) = 2,7928456 \,\mu_N$ $\mu_s(\mathbf{n}) = -1,91304185 \,\mu_N$, where μ_N is the "nuclear magneton". $\mu_N = \frac{e \cdot \hbar}{2M_p} = 3,1525 \cdot 10^{-8} \frac{\text{eV}}{\text{T}}$ **Problem:** $\mu = \mu_l + \mu_s = g_l \mathbf{l} + g_s \mathbf{s} \neq g_j \mathbf{j}$ Since in general $g_l \neq g_s$, therefore μ and \mathbf{j} are not parallel! **Only the projection of** μ on \mathbf{j} can be measured! $\mu_{eff} = \frac{\mu \mathbf{j}}{j} = \left(g_l \frac{\mathbf{lj}}{j} + g_s \frac{\mathbf{sj}}{j}\right) \mu_N$ and the direction: $\mu_{eff} = g_j \mathbf{j} \mu_N = \left(g_l \frac{\mathbf{lj}}{j} + g_s \frac{\mathbf{sj}}{j}\right) \cdot \frac{\mathbf{j}}{j} \mu_N$

Nuclear models #4: The nuclear collective model

1) Indications

We have seen that the shell model cannot explain some observations:

- Nuclei between the closed shells have quadrupole moments even in the ground state.
- How can the ground state nuclear quadrupole moments be much larger than predicted by the shell model?
- Why are the magnetic moments differing from the Schmidtlines?
- ..etc.

15

4

The total quadrupole moment of the nucleus: $Q = Q_{c} + Q_{M}$ If we know the ε , the electric quadrupole moment of the core can be calculated: $Q_c = \int \rho \cdot r^2 (3\cos^2 - 1) d^3 \mathbf{r}$ where ρ is the proton-density. Using $Z = \frac{4\pi}{3} A^2 B \rho_0$ we get $Q_c = \frac{3Z}{4\pi A^2 B} \int \left(\frac{\rho(\mathbf{r})}{\rho_0}\right) r^2 (3\cos^2 - 1) d^3 \mathbf{r} \approx \frac{4}{5} Z R^2 \varepsilon$ Finally we have: $Q = \left(1 + \frac{4}{5} \frac{ZR^2}{(r^2)} \cdot \frac{U_0}{S}\right) Q_N$ $O >> O_N$ is possible for small S (...soft" core, easily deformable) Few examples: ²⁰⁹₈₃Bi₁₂₆ doubly magic core (rigid) + 1 proton: $\frac{Q_{meas}}{Q} \approx 1$ $^{85}_{37}\text{Rb}_{48} \longrightarrow Q = 0.31 \text{ b}$ $^{87}_{37}\text{Rb}_{50} \longrightarrow Q = 0.14 \text{ b}$ (magic number of neutrons) $^{33}_{16}S_{17} \longrightarrow Q = -0,06 \text{ b} \quad ^{35}_{16}S_{19} \longrightarrow Q = +0,04 \text{ b}$ d^{3/2} _____ d^{3/2} 22