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Nuclear Physics  

(8th lecture) 
Content 

• Nuclear models #2:  The Fermi-gas model  (contd.) 

 The total kinetic energy 

 The asymmetry energy 

 The surface energy 

• Nuclear models #3: The nuclear shell model 

 Experimental indication 

 What characterizes a shell?  

 Shells in atomic physics (reminder) 

 The nuclear single-particle shell model 

 The 1D and 3D harmonic oscillator case 
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The Fermi-gas model 
Since the nucleons are fermions, we can try to set up a model of 

fermion „gas”.  

Assumption: the fermions are „closed” in a spherical potential 

well, but they move „freely” inside .  
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The number of states in the phase-space:  
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From this follows: 

The highest kinetic  

energy at the Fermi-level: 
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The depth of the 

nuclear potential  

is ~ 40 MeV for every 

nucleus!  
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The total kinetic energy of the nucleons: 
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The total kinetic energy of the 

protons and the neutrons: 
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The asymmetry energy: 

We note that                                , and a Taylor-expansion yields: 
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In the second part only the second order 

terms remain (the linear terms cancel): 
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This way we get an asymmetry term, similar to the Weizsäcker 

formula’s! 
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The total kinetic energy:  
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The first part contributes to the volume term: 

Note: it has positive sign, therefore it decreases the binding energy! 

(unlike in the Weizsäcker formula)  

A

Note: the asymmetry term also has a positive sign! This means 

that it increases the kinetic energy, and therefore decreases the 

binding energy (like in the Weizsäcker formula).  



2 

 5   

The surface energy: 

For simplicity consider now a cube  

(instead of a sphere) 

       zkykxk
V

zyx sinsinsin
23

rThe wave function: 

,n
L

kx


 ,m

L
k y


 

L
kz


 and  2222

zyx kkk k

The number of states in the phase space               : 

 

33

3
3

4

8

1
2

3

4

2
2 
















LKKV
AN

where K = kf 
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For n = 0, or m = 0, or l = 0 there is no wave function!  

However, they were also included in the volume of 1/8 sphere! 

A correction needed for the 3 quart-circle surface:   
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Obviously K’>K, i.e the kinetic energy 

will be increased!  

Since the number of the states  

in the volume >> on the surface,  

at first approximation                 → the correction term    3
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The „surface energy” term can also be explained – at least 

qualitatively – in the Fermi-gas model.   

Note: the attractive „nuclear forces”, however, are not included 

and explained (they are introduced only as an „external” 

potential, holding together the Fermi-gas)!  
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The main assumption of the Fermi-gas model was, that the 

nucleons move „independently” – without interacting with each-

other – in an outside potential well.  

Is this not a crazy assumption for strongly interacting particles?  
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Answer: 

In the ground state of the nucleus 

every level is occupied up to the 

Fermi-level. Particles could scatter 

out only over the Fermi-level.  

If a particle gets higher energy and momentum (outside the 

Fermi-level) in a scattering process, energy and momentum 

conservation would mean that the „other” particle should get 

lower energy/momentum → no empty state there, forbidden!  

This shows also the validity of the Fermi-gas model:  

mainly the ground state properties  8   

Nuclear shell model 
1) Experimental indications 

a) Neutron capture cross sections   

b) Binding energy difference of 

the last neutron 
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c) Excitation energy of the first excited states:   

Conclusion:  nuclei with the following Z and/or N numbers are 

extremely stable (in comparison with their neighbours): 

  2, 8, 20, 28, 50, 82, 126  These are the „magic numbers”. 

Nuclei with magic Z or N numbers are called „magic nuclei” 

If Z and N both are magic numbers, they are „double magic nuclei” 

The following nuclei are double magic: 

He,4

2 O,16

8
Ca,40

20 Ca,48

20
Ni,48

28 Ni,78

28
Pb208

82  10   

2) What characterizes a „shell”? 

„Shell is a set of quantum-mechanical states with the same main 

quantum number”    True?  

Remember, in atomic physics:  

The noble gases are 

(experimental fact):   

 „Magic numbers” in atomic physics should be: 2, 10, 18, 36, 54, 86.  

The nth „shell” can hold theoretically 2n2 electrons. Therefore the 

theoretical magic numbers would be:  n 2n2 Magic number 

1 2 2  (☺) 

2 8 10  (☺) 

3 18 28  (??)  

4 32 60  (??) 

5 50 110  (??) 

There is a discrepancy between 

theory and experiment!  

Conclusion: The magic numbers in 

Nature are not defined by the rule 

above!  

2He,   10Ne,  18Ar,  36Kr,  54Xe,  86Rn 
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A quantum-mechanical system has a 

set of states with different energies, 

available for its constituents.  

The excitation occurs if a particle goes 

into a non-occupied state at higher 

energy.  If this state is „close” in 

energy, then the excitation is easy 

(requires small amount of energy).  

If the next empty state is „far” in 

energy, then the excitation is difficult.   

Shell is a set of quantum-mechanical states with similar energy. 

Shells are separated by larger energy gaps.   

E 
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Shells in atomic physics (reminder):    
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The quantum-mechanical treatment (Schrödinger-equation): 
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„energy-shells”!  

(spherical coordinates)  
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0 3 4f 14 

This determines the „shells”!  

Why are the shells different in the Periodic System?  
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Shells in atomic physics (reminder):    

Bohr Quant. mech. No. of particles 

But only in the H-atom! 

(„True” Coulomb potential of 

a point-like nucleus) 
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Bohr: 

The „size” gets 

larger!  

Why are the shells different in the Periodic System?  

The „screening” 

of the occupied 

inner states 

deforms the 

potential!  

Splitting of the 

states occur 

according to l !  

The shell parameters depend on the shape of the potential! 
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This is the „single-particle shell model” 

Every particle moves independently in a mean potential 

3) The nuclear shell model 

„The shell parameters depend on the shape of the potential!”  

How is the „nuclear potential”?  
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The shape of the „mean” nuclear potential. 

• Central → depends only on the absolute value of ri: V(ri) 

• Similar shape as the nuclear density  

(since the nucleons create it) 

The nuclear shell model (contd.) 

 
 













0

0


 r
VrV

R 

It is difficult to solve the 
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The nuclear shell model (contd.) 

 Case #1: square well (infinite)! 

The Schrödinger equation in the interior region in spherical 

coordinate system is:  
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kR 2(2L+1) Sum 

 L= 0 (1s) 2 2 

4,49 L= 1 (2p) 6 8 

5,79 L= 2 (3d) 10 18 

2 L= 0 (2s) 2 20 

6,99 L= 3 (4f) 14 34 

7,22 L= 1 (3p) 6 40 
  ?  

2 

8 

20 

The functions have to go to 0 at  r = R  

→ only roots of the Bessel functions 

are allowed → kn,l → discrete values  

→ En,l discrete values too.   

Second column: angular momentum 

quantum number (L) and the atomic 

physics notation of the state.  

The nuclear shell model (contd.) units  
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Note: inside a shell the 

higher L states go lower!  
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The nuclear shell model (contd.) 

Case #2 : the harmonic oscillator:  

Wave function  

(in one dimension):  
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The 3D harmonic oscillator (in Descartes coordinates):  

 
 















































z
m

Hy
m

Hx
m

Hezyx
zyxzyx nnn

zyxm

nnn








2

 

,,

222

,,




















2

3

2

3
nnnnE zyxn   where  zyx nnnn 

,...2,1,0n

  22

0
2

1
rmVrV 

Easiest solution is in Descartes coordinates  
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The nuclear shell model (contd.) 

a) The parity of the states:   
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The nuclear shell model (contd.) 

The 3D harmonic oscillator (in spherical coordinates):  

Wave function:   
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The idea for finding the correspondence: functions should be 

chosen to follow  

• the same parity behaviour and  

• the same number of degenerations!  

Question:  

What is the relation between n in the Descartes-states (defining the 

energy-shells), and the 3 quantum numbers of the wave-function?   
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n  (n+1)(n+2) nr l 2(2l+1) 

0  2 0 0 1s 2 

1  6 0 1 2p 6 

2  12 1 0 2s 2 

0 2 3d 10 

3  20 1 1 3p 6 

0 3 4f 14 

4  30 2 0 3s 2 

1 2 4d 10 

0 4 5g 18 

Remember:   

     rr n

n

n  1

  212  nng

The nuclear shell model (contd.) 

lnn r  2

Descartes  spherical  

2   

8   

20 

40 

70 

Magic numbers:  

2, 8, 20, 28, 50, 82, 126  

The harmonic oscillator is a good „first” approximation, 

but something more should be included!    


