Nuclear Physics (7th lecture)

Content

- · Gamma decay (contd.)
- Sum rules
- · Measuring methods of the gamma decay constant
- Gamma-gamma angular correlation (multipolarity meas.)
- Nuclear models #1: liquid drop model
- Nuclear models #2: The Fermi-gas model

The gamma-decay (contd.)

Decay constant (transition probability)

Complicated quantum-electrodynamic calculation. Approximation: only one unit charge changes its state. Result: interaction operator

$$\lambda_{E}(l,m) = \frac{8\pi(l+1)}{\hbar l[(2l+1)!!]^{2}} \left\langle \frac{\omega}{c} \right\rangle^{2l+1} \left| \left\langle \psi_{f} \right| M_{l,n}^{E} \right| \\ E = \hbar \omega \qquad \text{final and i}$$

 $\int_{1,m}^{L} |\Psi_i\rangle = \text{for electric transitions}$

1

3

final and initial wave functions

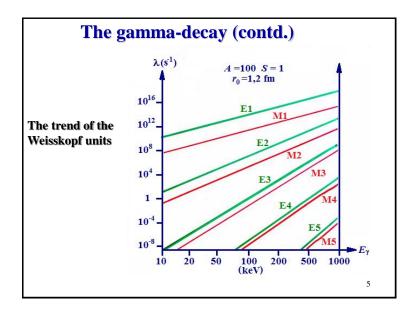
Similar for magnetic transitions

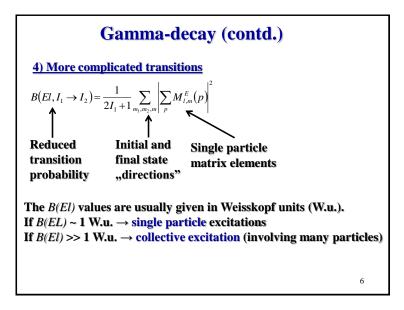
Further approximations:

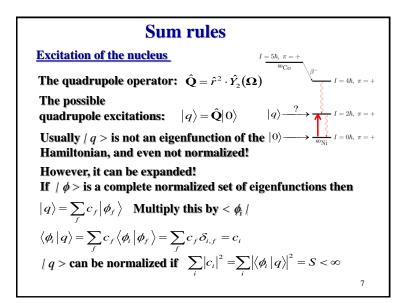
- The $\langle \psi_f |$ and $|\psi_i \rangle$ wave functions contain $Y_l^m(\mathcal{G}, \varphi)$ spherical harmonics, these can be integrated with the $M_{l,m}^E$ operator $\rightarrow S(I_{i}, I_{i}, l)$ "statistical" factor
- The *m* quantum numbers averaged (no direct observation)
- The radial part of the wave functions = constant (!)

Gamma-decay Summary of previous lecture: **1)** Multipole expansion of electromagnetic waves $B_{l,m}^{(E)}(\mathbf{r}) = b_{l,m}f_l(\mathbf{kr})\mathbf{L}Y_l^m(\vartheta, \varphi) \text{ and } E_{l,m}^{(E)}(\mathbf{r}) = \frac{i}{k} (\nabla \times \mathbf{B}_{l,m}^{(E)}) \text{ ,,electric}^m$ $E_{l,m}^{(M)}(\mathbf{r}) = a_{l,m}f_l(\mathbf{kr})\mathbf{L}Y_l^m(\vartheta, \varphi) \text{ and } \mathbf{B}_{l,m}^{(K)}(\mathbf{r}) = -\frac{i}{k} (\nabla \times \mathbf{E}_{l,m}^{(M)}) \text{ ,,magnetic}^m$ These waves have good angular momentum and parity! Electric transitions parity change: $\Delta \pi = (-1)^l$ Magnetic transitions parity change: $\Delta \pi = (-1)^{l+1}$ **2)** Selection rules Angular momentum: $|I_l - I_f| \le l_y \le I_l + I_f$ Parity: $\pi_y = \pi_1 \cdot \pi_2$ Note: since the ,,intrinsic" angular momentum of a photon is 1, $l_y \ge 1 \quad \square 0 \to 0$ transitions are strictly forbidden.

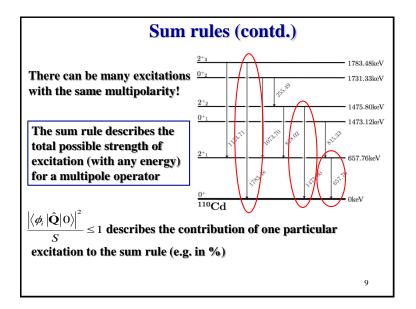
The gamma-decay (contd.) Finally we get the Weisskopf units: $\lambda_{E}(l) = 4,4 \cdot 10^{21} \frac{l+1}{l[(2l+1)!]^{2}} \left(\frac{E_{\gamma}}{197}\right)^{2l} \left(\frac{3}{l+3}\right) \cdot R^{2l} \cdot S(I_{i}, I_{f}, l)$ $\lambda_{M}(l) = 1,9 \cdot 10^{21} \frac{l+1}{l[(2l+1)!]^{2}} \left(\frac{E_{\gamma}}{197}\right)^{2l+1} \left(\frac{3}{l+3}\right) \cdot R^{2l-2} \cdot S(I_{i}, I_{f}, l)$ Since this is dependent on units, *R* should be in fm, E_{γ} in MeV. The results are in 1/s. How do the transition probability change with multipolarity? $\left(E_{\gamma}R\right)^{2l} = \left(hc\right)^{2l} \left(\frac{R}{\lambda}\right)^{2l} \propto \left(\frac{R}{\lambda}\right)^{2l}$ Take A = 125 nucleus, and $E_{\gamma} = 0,5$ MeV $R = 1,2 \cdot \sqrt[3]{125} = 6$ fm $\lambda = 400$ fm $\left(\frac{R}{\lambda}\right)^{2} = 2,25 \cdot 10^{-4}$ In atomic physics $R \approx 10^{4}$ fm and $\lambda \approx 8 \cdot 10^{8}$ fm $\longrightarrow \left(\frac{R}{\lambda}\right)^{2} \approx 10^{-10}$ Only E1 transitions occur for the atoms! Role of collisions! 4

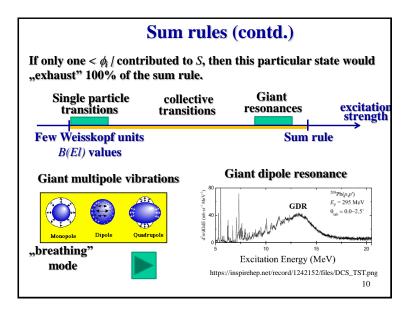


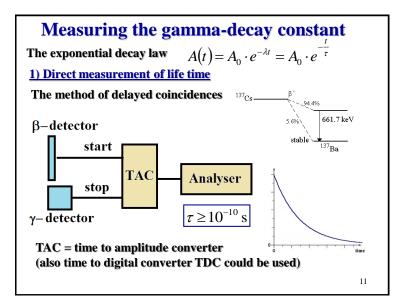


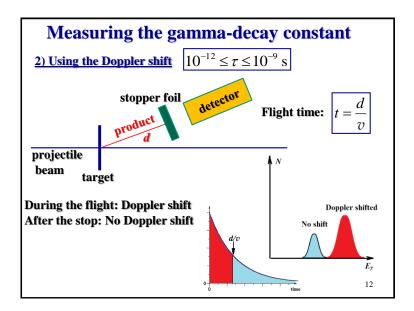


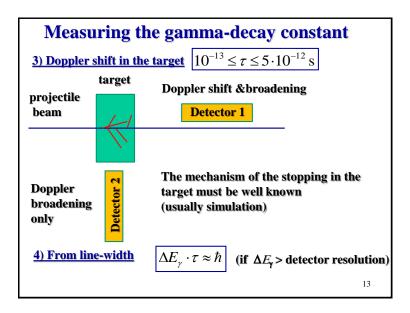
Sum rules (contd.)
Finally we have: $\sum_{i} \left \langle \phi_i \hat{\mathbf{Q}} 0 \rangle \right ^2 = S$
This is the Thomas-Kuhn sum rule. Here \hat{Q} can represent any multipole operator (not only quadrupole)
It can be calculated theoretically using simple assumptions!
For example for the dipole operator: $\sum_{f} \left \left\langle \phi_{f} \left D \right 0 \right\rangle \right ^{2} \propto \int \sigma_{D}(E) dE = \frac{2\pi e^{2} \hbar^{2}}{mc} \cdot \frac{NZ}{A} \approx 60 \frac{NZ}{A} \text{ [MeV-mb]}$
What does the sum rule mean physically?
$\left \langle \phi_i q \right\rangle\right ^2 = \left \langle \phi_i \hat{\mathbf{Q}} 0 \rangle\right ^2 \sim \text{how strongly the} < \phi_i / \text{ nuclear state} \\ \text{can be excited from the ground state} \\ \text{with the } \hat{\mathbf{Q}} \text{ operator} $

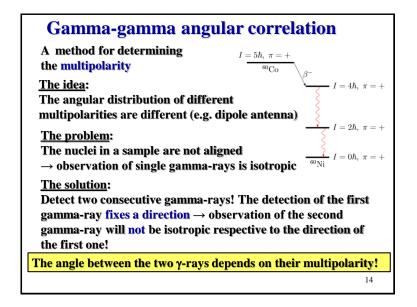


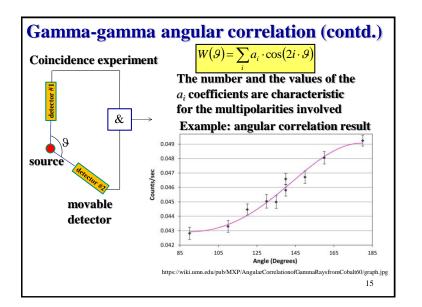


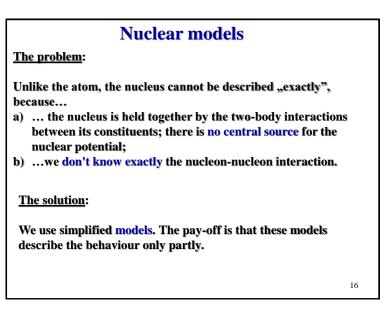












1) The liquid drop model

We have treated it already. That led to the Weizsäcker-formula. It describes well the binding energy. But only that! Assumptions:

- Nuclear forces are attractive and short-ranged → the density is constant (like in a liquid)
- The nucleus is sphere-shaped (because of the surface tension)
 → the surface energy is proportional to the surface
- The nucleus is homogeneously charged
- \rightarrow Coulomb term
- The constituents are fermions (Pauli principle)
- \rightarrow asymmetry energy term
- Pairing energy can be empirically taken into account

 $B = b_V A - b_F \cdot A^{\frac{2}{3}} - b_C \cdot \frac{Z^2}{A^{\frac{1}{3}}} - b_A \cdot \frac{(N-Z)^2}{A} + b_F \cdot \delta \cdot A^{-\frac{1}{2}}$

17

2) The Fermi-gas model

Since the nucleons are fermions, we can try to set up a model of fermion "gas".

<u>Assumption</u>: the fermions are "closed" in a spherical potential well, but they move "freely" inside .

What can be expected from this model?

- Describe only the kinetic energy contribution of the nucleons

1, if $p \leq p_f$

0, if $p > p_f$

 p_f

р

18

- Since quantum mechanics is used, the "asymmetry" term might be described
- Some surface effects can also be expected

The ground state:

- Since they are fermions, only one particle n(p) =in a state (Pauli exclusion principle)
- Since ground state → the lowest energy states are filled
- p =ħk

The number of states in the phase-space:

$$d\mathscr{V} = 2 \cdot \frac{d^{3}\mathbf{r} \cdot d^{3}\mathbf{p}}{(2\pi\hbar)^{3}} = 2 \cdot d^{3}\mathbf{r} \cdot \frac{p^{2} \cdot dp}{(2\pi\hbar)^{3}} d\Omega_{p}$$
Because of the spin

$$\mathscr{V} = \int n(p) d\mathscr{V} = 2 \iint n(p) \cdot d^{3}\mathbf{r} \cdot d^{3}\mathbf{p} = 2 \frac{V}{(2\pi\hbar)^{3}} 4\pi \int_{0}^{p_{f}} p^{2} \cdot dp = 2 \frac{V}{(2\pi\hbar)^{3}} \cdot \frac{4\pi p_{f}^{3}}{3}$$
For the number of protons and of neutrons we have

$$Z = 2 \frac{V}{(2\pi\hbar)^{3}} \cdot \frac{4\pi p_{fp}^{3}}{3} \qquad N = 2 \frac{V}{(2\pi\hbar)^{3}} \cdot \frac{4\pi p_{fn}^{3}}{3}$$
Using $R = r_{0}^{3} \sqrt{A}$ and $V = \frac{4\pi}{3} R^{3} = \left(\frac{4\pi}{3} r_{0}^{3}\right) \cdot A$ we get :
 $p_{fp}^{3} = \frac{Z}{A} \cdot \frac{(2\pi\hbar)^{3}}{2 \cdot \frac{4\pi}{3} r_{0}^{3}} = 3\pi^{2} \left(\frac{\hbar}{r_{0}}\right)^{3} \cdot \frac{Z}{A}$, and $p_{fn}^{3} = 3\pi^{2} \left(\frac{\hbar}{r_{0}}\right)^{3} \cdot \frac{N}{A}$

To get some numerical estimation we approximate: $\frac{Z}{A} \approx \frac{N}{A} \approx \frac{1}{2}$ we get $p_{fp} \approx p_{fn} = \left(\frac{3\pi^2}{2}\right)^{\frac{1}{3}} \cdot \frac{\hbar}{r_0}$ Contains only known constants! The highest kinetic energy at the Fermi-level: $E_f = \frac{p_f^2}{2M} \approx 33 \,\text{MeV}$ Since the average binding energy of a nucleon is ~ 7 MeV, we get the following picture for the nuclear potential: