
1 

 1   

Nuclear Physics  

(7th lecture) 
Content 

• Gamma decay (contd.)  

• Sum rules 

• Measuring methods of the gamma decay constant 

• Gamma-gamma angular correlation (multipolarity meas.) 

• Nuclear models #1:  liquid drop model 

• Nuclear models #2:  The Fermi-gas model 
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Gamma-decay 

1) Multipole expansion of electromagnetic waves 
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These waves have good angular momentum and parity!   

Electric transitions parity change:   l
1

Magnetic transitions parity change:    1
1


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l


2) Selection rules Angular momentum: fifi IIlII  

Parity: 21  

Summary of previous lecture:  

Note: since the „intrinsic” angular momentum of a photon is 1,  

                   0 → 0  transitions are strictly forbidden.  1l
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The gamma-decay (contd.) 

Decay constant  (transition probability) 

Complicated quantum-electrodynamic calculation. 

Approximation: only one unit charge changes its state. 

Result:    
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for electric transitions 

Similar for magnetic transitions 

Further approximations: 

- The        and           wave functions contain               spherical 

harmonics, these can be integrated with the          operator  

 → S(Ii, If, l) „statistical” factor 

- The m quantum numbers averaged (no direct observation) 

- The radial part of the wave functions = constant (!) 
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interaction operator 
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The gamma-decay (contd.) 
Finally we get the Weisskopf units: 
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Since this is dependent on units, R should be in fm, E in MeV.  

The results are in 1/s. 

How do the transition probability change with multipolarity?  
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Take A = 125 nucleus, and E = 0,5 MeV  
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Only E1 transitions occur for the atoms!  Role of collisions! 
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The gamma-decay (contd.) 

The trend of the  

Weisskopf units  
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4) More complicated transitions 
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final state 

„directions” 

Single particle 

matrix elements 

The B(El) values are usually given in Weisskopf units (W.u.).  

If B(EL) ~ 1 W.u. → single particle excitations 

If B(El) >> 1 W.u. → collective excitation (involving many particles)   

Gamma-decay (contd.) 
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Sum rules 

Excitation of the nucleus  

0

The quadrupole operator:  ΩQ 2

2 ˆˆˆ Yr 

The possible  

quadrupole excitations: 0Q̂q 
?

q

Usually | q > is not an eigenfunction of the 

Hamiltonian, and even not normalized!  

However, it can be expanded!  

If  | f > is a complete normalized set of eigenfunctions then 
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Finally we have:   S
i

i 
2

0Q̂f

Sum rules (contd.) 

This is the Thomas-Kuhn sum rule.  

Here      can represent any multipole operator (not only quadrupole)   

What does the sum rule mean physically?  

22

0Q̂ii q ff  ~ how strongly the < fi | nuclear state 

can be excited from the ground state 

with the     operator  

Q̂

Q̂

It can be calculated theoretically using simple assumptions!  

For example for the dipole operator:  
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There can be many excitations 

with the same multipolarity!  

1
0ˆ

2


S

i Qf
                        describes the contribution of one particular 

excitation to the sum rule (e.g. in %)   

The sum rule describes the 

total possible strength of 

excitation (with any energy) 

for a multipole operator  

Sum rules (contd.) 
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If only one < fi | contributed to S, then this particular state would 

„exhaust” 100% of the sum rule.   

excitation  
strength  

Few Weisskopf units 

B(El) values 

Sum rule 

Single particle 
transitions  

Giant  
resonances 

collective 
transitions  

Giant dipole resonance  

https://inspirehep.net/record/1242152/files/DCS_TST.png 

Giant multipole vibrations 

Sum rules (contd.) 

„breathing” 

 mode 
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Measuring the gamma-decay constant 

The exponential decay law   
t

t eAeAtA


  00

1) Direct measurement of life time 

The method of delayed coincidences 

TAC = time to amplitude converter 

(also time to digital converter TDC could be used) 

s 10 10
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Measuring the gamma-decay constant 

2) Using the Doppler shift s 1010 912  

stopper foil 

target 

projectile 

 beam 

d 

Flight time:  
v

d
t 

During the flight: Doppler shift 

After the stop: No Doppler shift 

http://sukjaro.eu/SCsaba/GiantResonances/GiantResonances.htm
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Measuring the gamma-decay constant 

3) Doppler shift in the target s 10510 1213  
target 

projectile 

 beam Detector 1 
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c
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Doppler shift &broadening 

Doppler  

broadening  

only 

The mechanism of the stopping in the 

target must be well known 

(usually simulation) 

4) From line-width  E (if  E > detector resolution) 
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Gamma-gamma angular correlation 
A  method for determining  

the multipolarity 

The idea:  

The angular distribution of different 

multipolarities are different (e.g. dipole antenna) 

The problem:  

The nuclei in a sample are not aligned  

→ observation of single gamma-rays is isotropic 

The solution:  

Detect two consecutive gamma-rays! The detection of the first 

gamma-ray fixes a direction → observation of the second 

gamma-ray will not be isotropic respective to the direction of 

the first one! 

The angle between the two -rays depends on their multipolarity!   
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Coincidence experiment 

Example: angular correlation result 

https://wiki.umn.edu/pub/MXP/AngularCorrelationofGammaRaysfromCobalt60/graph.jpg 

    
i

i iaW  2cos

The number and the values of the 

ai coefficients are characteristic 

for the multipolarities involved 

Gamma-gamma angular correlation (contd.) 

movable 

detector 

source 
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The problem:  

 

Unlike the atom, the nucleus cannot be described „exactly”, 

because… 

a) … the nucleus is held together by the two-body interactions 

between its constituents; there is no central source for the 

nuclear potential; 

b) …we don't know exactly the nucleon-nucleon interaction.  

Nuclear models 

The solution:  

 

We use simplified models. The pay-off is that these models 

describe the behaviour only partly.  
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1) The liquid drop model 

Assumptions:  

- Nuclear forces are attractive and short-ranged  

      → the density is constant (like in a liquid) 

- The nucleus is sphere-shaped (because of the surface tension) 

 → the surface energy is proportional to the surface 

- The nucleus is homogeneously charged  

 → Coulomb term 

- The constituents are fermions (Pauli principle)  

 →  asymmetry energy term 

- Pairing energy can be empirically taken into account  
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We have treated it already.  That led to the Weizsäcker-formula. 

It describes well the binding energy. But only that! 
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2) The Fermi-gas model 

Since the nucleons are fermions, we can try to set up a model of 

fermion „gas”.  

Assumption: the fermions are „closed” in a spherical potential 

well, but they move „freely” inside .  

What can be expected from this model?  

- Describe only the kinetic energy contribution of the nucleons 

- Since quantum mechanics is used, the „asymmetry” term 

might be described 

- Some surface effects can also be expected  

The ground state:  

- Since they are fermions, only one particle 

in a state (Pauli exclusion principle) 

-  Since ground state → the lowest energy 

states are filled 

- p =ħk   
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The number of states in the phase-space:  
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For the number of protons and of neutrons we  have 
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To get some numerical estimation we approximate:                      
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The highest kinetic energy at the Fermi-level:  MeV 33
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Since the average binding 

energy of a nucleon is ~ 7 MeV, 

we get the following picture for 

the nuclear potential: 
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we get Contains only known constants! 
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