Nuclear Physics (5th lecture)

Content

- · Parity violation in weak interaction, Wu experiment
- · History of the neutrino, leptons' families. Leptonic charge

1

- Anti-neutrino detection (Reines-Cowan experiment)
- Neutrino detection (Davis experiment)
- Solar neutrino puzzle
- · Neutrino oscillation, and neutrino masses

Not only energy was "missing"

M<<*M*_{proton}, neutral, spin=1/2

 $^{6}He \rightarrow ^{6}Li + e^{-}$

 $^{14}_{6}C \rightarrow ^{14}_{7}N + e^{-}$

 $J: 0 \rightarrow 1 + \frac{1}{2}$ (??)

2

By that time it was known (Dirac) that fermions should have antiparticles. neutrino = antineutrino? If no then we call them Dirac neutrino If yes, we call them Majorana neutrino <u>Three "family" of the leptons</u> 1936: C. D. Anderson: discovery of the muon (μ ⁻) (m _μ ~200 m _e) 1962: Lederman, Schwartz, Steinberger: discovery of the μ-neutrino (Nobel-prize 1988) 1975: M. L. Perl (SLAC, USA): discovery of tau meson (m _τ ~3500 m _e) (Nobel-prize: 1995)				
2000: DONUT experiment (Fermilab, USA) discovery of tau neutrino				
The lepton families (flavours)				
Charged lepton	Mass	Neutral lepton	Mass	
electron (e ⁻)	$1 m_{e}$	electron neutrino (v_e)	?	
muon (µ⁻)	$\sim 200 m_{\rm e}$	muon neutrino (ν_{μ})	?	
tau meson (τ ⁻)	~3500 m _e	tau neutrino (v_{τ})	?	
+ their antiparticles!			9	

<u>A few examples</u> :		
$_{Z}^{A}X \rightarrow_{Z+1}^{A}Y + e^{-} + \widetilde{\nu}$	Negative β–decay	
$0 \rightarrow 0+1+(-1)$	L _e	
$_{Z}^{A}X \rightarrow_{Z-1}^{A}Y + e^{+} + v$	Positive β–decay	
$0 \rightarrow 0 + (-1) + 1$	L _e	
$_{Z}^{A}X + e^{-} \rightarrow_{Z-1}^{A}Y + \nu$	Electron capture	
$0 + 1 \rightarrow 0 + 1$	L _e	
$\pi^- ightarrow \mu^- + {\widetilde u}_\mu$	Pion decay	
$0 \rightarrow 1 + (-1)$	L_{μ}	
$\mu^- \to e^- + \widetilde{\nu}_e + \nu_\mu$	Muon decay	
$0 \rightarrow 1 + (-1)$	L _e	
$1 \rightarrow 0+ 0+1$	L_{μ}	11

B. Pontecorvo: use nuclei as target: $V + {}_{Z}^{A}X \rightarrow {}_{Z+1}^{A}Y + e^{-}$ Problem: big amount of X needed \iff few atoms of Y created How to separate and detect? X and Y must be very different chemically $V + {}_{17}^{37}\text{Cl} \rightarrow {}_{18}^{37}\text{Ar} + e^{-}$ $\int_{18}^{37}\text{Ar} + e^{-} \rightarrow {}_{17}^{37}\text{Cl} + V$ (T_{1/2} = 35 days, e⁻ capture, EC) Source: Sun 4 ${}_{1}^{1}\text{H} \rightarrow {}_{2}^{4}\text{He} + 2e^{+} + 2v + 26,22 \text{ MeV}$ Production rate: $\frac{1}{13,11 \text{ MeV}} = 4,8 \cdot 10^{11} \left[\frac{1}{J}\right]$ Solar constant: 1361 kW/m² = 136,1 J/(cm²s) The neutrino flux then: $\phi = 4,8 \cdot 10^{11} \cdot 136,1 = 6,53 \cdot 10^{13} \frac{1}{cm^{2}s}$

<u>Main idea</u>: neutrinos have masses, v_e, v_{μ}, v_{τ} are NOT mass-eigenstates! (B. Pontecorvo 1957) The weak interaction selects according to the "flavours" <u>Creation according to flavours</u> \rightarrow mixed mass state <u>Propagation</u> \rightarrow according to masses \rightarrow mixing changes <u>Detection</u> (Davis) \rightarrow according to flavours again

