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Basic theory of beta decay

Three goals:
* The energy (mass) condition for the decay to occur
« The shape of the electron (positron) spectrum
(transition probability in function of electron energy)
* The integral transition probability (decay with any energy)

Starting point:
According to the quantum mechanics, no electron can be

present inside the nucleus —— the electron-antineutrino pair
is created in the moment of the interaction! -

Remark:

In particle physics we describe the

beta-decay as the picture shows, but here we are
now in classical nuclear physics! igd
M(W=) = 80,385+0,015 GeV/c2—> very short range

Energy considerations:
Negative S—decay: 5X—>,Y +e +v
M (xnucl) c?=M(Y,,)c*+ m(e’)«c2 +m(V)-c*+Q
[M X, )+ Z ~m(e’)]-c2'= [M (You)+2 -m( ) c +m( ) ¢2+0+Q
M (X ) M (Y, )-€°
We get for the decay energy:|Q =[M(X,0n )~ M (Yo )]-c2|
Positive S—decay: ’;x_>zfjlY +et v
M (X)€% =M(Y,,,)-c? +m(e ) ct+m(@)-c?+Q
[M X +Z-m(e’)-cl2 :|[M( et +Z m(e )] cZ+m ( ) c?+0+Q
M (Xa'mm) c? M(Y.) cPemle )-c?
Here the decay energy: |Q =M (X,pn) M (Yqn)—2-mle*)-c?|
Positive B—decay occurs only, if
[M (X o)~ M (Yo )J-€% > 2-m(e*)- ¢ =1022 keV

Electron capture (EC): 5X+e =AY +v
M (X, )-C%+ m(e’)-c2 =M(Y,q)-c2+m(v)-c* +Q
IM (Xpoa)+Z -mle” ) ¢’ + m(e)-c? = [M (Yoo )+ (2)-mle )] ¢’ +0+Q
M (X )7 M (Y,r)-c7+mle”)-c?
The electron masses cancel out, so we get again for the decay
eNergy: |Q = M (Xyon)—M (Yuun )I-¢°|

Condition for energy (atomic masses) summarized:
Negative p—decay:s X—,4Y +&~ +v —> M(X)-M(Y)>0
Positive B—decay: 2 X—,%Y +e* +v —>M(X)-M(Y)>2m(e)

Electron capture: EX+e =AY +v —>M (X)— M (Y) >0




The shape of the energy spectrum

Starting point: 2

Fermi’s ,,Golden rule”: ,,(Ef )— ’V. f‘ p(E )
Partial decay Final siate A ):ﬂ
constant Interaction  density: " g,

matrix-element
Both factors can depend on the energy of the emitted particles

—> shape of the spectrum
Calculation of the matrix element v, , = gj\{fjﬂ,,\}fidsr

(Hg is the interaction operator, g is the interaction ,,strength™)

The initial state is only a nucleus: ¥, =y;

The final state is a nucleus + electron +(anti)neutrino: ¥; =y ¢ ¢

The matrix element becomes: V, ; = gjw7¢j¢:|:|ﬁwid3r

pr .q-r
1 5 1

Fifst approximation: %= 57¢ " and _f/’v RV g (plane _vvaves)
p is the momentum of the electron and q is that of the neutrino.

V is a normalization volume.

Further approximations:

+ the integral will extend only in the region of the nucleus, since
the ¥ nuclear wave functions are zero outside. But for this
region ' <<1, so we get o, ~— 1+|%+ j and 0= —(1+|%+

W
. Furtherrwe take only the first term: ¢.=9, NW

In this approximation

the matrix element depends Vi, =g fu/f pwid? r=9y Mf.
only on the nuclear states:

In this approximation Fermi’s AE, )= 2z o’ ‘2 1 dn
Golden rule becomes: Yn veodE,

|
depends only on the nucleus s

Calculation of the final density of states: |, )- ddE“

The simplest assumptions:

1) Since the decay is kinematically not complete (3 particles in the
final state), the electron and the (anti)neutrino randomly
»share” the energy available to them.

2) Since the nucleus is much heavier than the electron and the
neutrino, the kinetic energy of the recoil can be neglected:
all energy goes into the kinetic energy of the electron+neutrino

1) What does randomly share mean?

Every microstate in the common phase-space will be populated
with equal probability.

The number of electron states in 1

the phase space (since the electrons dn, =——=V -4z p*-dp
are emitted in a random direction): (27h)

Similarly, the number of antineut- dn, :Lv Ar-q?-dg
rino states in the phase space: (27h)

The energy in the final state is: E, =E, +E,
Where E? = p*c? +(mc2)2 and E2=(E, -E,f —qzc2

n 1 2 (o (o ap) L
So we get & " ey ()5 (E ~(mc )2)—2(E -EJ- d--
Using dd?q% (at a given E,) ézw(z(jf)l —(E2~(mc Y)‘(Eu—Ee)’dp

f f
(Ef=E, because electron and neutrino get the total decay energy)

We measure E, and not p, so instead of dp we need dE,

Using pc=yE’-(mc’f  we get =t —5 e
¢ g2~ (mc*f

2
FE— 3 . ﬂ _\2 An k2 _(me2 R . EVY.E.
Substituting it back: E, =V {(2717‘1)303J E2—(mc*f - (E,~E,)*-E, - dE,

M| -\ E2=(mc*f -(E, ~E,) -E. - dE,

i 1
And finally: |A(E,)= gzm\




Comparison of the theoretical and experimental spectra
L L I B
S4cy 3~

Note that in the above calculation
there was no difference between

negative and positive B—decay. a?
However, experiment shows, e
that there is a difference!  (%cu)

i S A o A IO T (O

The difference is due to the Y I i
Coulomb-interaction between the ~ ° e

electron (positron) and the nucleus!

LI 1 L LA L ML B

640, g~

Solution: instead of plane-waves, we s
should use the Coulomb wave- "
functions for the outgoing charged £ 2
particle. This leads to a correction

I I |

factor: F(z,E,)oc , where ! i
T —e 01|1|||11x||
Zez : . 0 907
&=+27—— | vis the velocity. _ T [ _
hv R. D. Evans, The Atomic Nucleus (New York: McGraw-Hill, 1955)
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The Fermi-Kurie plot

Finally we get |4(E.)=97M, [ e 371’ _F(Z.E)E?-(mc*} (€, ~E,} -E.-dE,

Experimental test:
The detected counts in a given electron energy interval (E,E.+dE,):
N(E, ) F(Z,E,)-{E2—(mc?f -(E,—E, ) -E, .
From this we get

N(a)-[ NE,) ] «(E-E,)
F(2.E) €, E2~(mef

The Fermi-Kurie plot is linear, if
the previous assumptions are valid
(allowed decays™).

For ,,forbidden decays” the Taylor
expansion ¢, ~— 1+|7+ should
continue —— additional

NeEy

dependence on p (and energy). NN U e

MeV
D. C. Camp and L. M. Langer, Phys.Rev. 129, 1782 (1963) 10

The total decay constant of the B—decay, the log(ft) value

The total decay constant is the integral of the partial: 1= j/l (E,)dE,

)“*g ‘Mf‘j‘ ) JFZ E Eez ( ) (EO Ee) Ee dEe

Define the ,,Ferml mtegral” (its values are tabulated):

@ [F@.E)E ~(ne'f (£, ~E.F -E, -k,
’ 1
‘2 YO £(Z,E,)-(mc?f
In2

Taking into account that 1 =—=the f(Z,Ey)-¢ (¢ further on)

f-t=|n2% Thi5|sde ending only on the M
gzm5C4‘M“‘2 p g Yy f,i

f(Z,E,)=

A=g’M

.

Since t can range through many orders of magnitude, usually one
uses the log,(f¢) value (t should be given in seconds)
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The strength of the weak interaction

For B—decays with shortest lifetimes log,,(f -t)~3..4

These are the ,,super-allowed” decays. Among them those are the
most interesting ones, where 0*— 0* super-allowed decay occurs.
For these M, =+/2 (theoretically), independent of the nucleus!
The experlment confirms it! The measured value: f -t =3090+5[s]
27°h

Using now f-t=In2
gzmSCA‘M o

-, the value of g can be determined:
lg=88-10° [Mev-fm?
Comparing the strength of the four interactions

With fundamental constants we create dimensionless quantities.
For example for the weak interaction: g - gM:.¢ 5 €~10°

Similar Strong interaction: -1
dimensionless Electromagnetic interaction: 1/137 ~102
quantities Weak interaction: ~10

Gravity: ~1039
12




Remaining problems

* Hg =722

* neutrino ¢—=) antineutrino?? 7 Relativistic quantum
* electron ¢—= positron?? mechanics???
Solution i
In relativistic quantum mechanics the electron &
wave-function is a spinor with 4 components @, = eﬁ
(describing the electron and the positron and :j
the two spin positions) v
Similarly, the neutrino wave-function is also a :T
spinor with 4 components (describing the o, = ;i
neutrino and the antineutrino and the two 7,

spin positions)

Remember: V, , = gj'y/:ﬂx//id%

Therefore the product ¢, ¢, in the integral may
have 16 components (any combination = 42)! 13

The Hgoperator can act differently on these components

The Hgoperator also has 16 components!

Using the superposition principle
16 components |:> another 16 components!
(...of quantities with known symmetry)

Behaviour Number of
components

Scalar 1

Pseudoscalar 1 0 a a a

Vector 4 -a 0 a a

Axial-vector 4 % -a 005
/7 -a, -a, —-a O

Antisymmetric tensor 6

14

Therefore the Hg operator also consists of 5 terms:

scalar vector tensor (antisymmetric)
pseudoscalar axial vector
» Pseudoscalar can NOT make any transition! (can be shown)
Angular momentum and selection rules
OX—=AY +e +v
Jy =J, +s,+5S, vectorequation. Denote S, +S, =]

s, =1/2,and s, =1/2, so j:{l’ (i:=-10,2) [l

Can be shown: 0, (jz = O) Tl
 scalar and vector causes: j =0 (Fermi-transitions)

 axial vector and tensor causes: j =1 (Gamow-Teller transitions)

Selection rules: J, =Jy for Fermi-transitions (AJ=0)
Jy = Jy£1, or Jy = Jy for Gamow-Teller-transitions (AJ =0, £1)
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