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Nuclear Physics 

(4th lecture)
Content

• Basic theory of beta decays 

• Energy considerations

• Fermi theory of beta-decay 

• Fermi and Gamow-Teller transitions
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Basic theory of beta decay

Three goals: 

• The energy (mass) condition for the decay to occur

• The shape of the electron (positron) spectrum 

(transition probability in function of electron energy) 

• The integral transition probability (decay with any energy)

Starting point:

According to the quantum mechanics, no electron can be 

present inside the nucleus              the electron-antineutrino pair 

is created in the moment of the interaction! 

Remark:

In particle physics we describe the 

beta-decay as the picture shows, but here we are 

now in classical nuclear physics!

M(W±) = 80,385±0,015 GeV/c2 very short range 
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Energy considerations: 

~YX A

1Z

A

Z  

 e

        QcmcemcMcM   222

nucl

2

nucl
~YX 

            QcemcemZMcemZM   0YX 22

nucl

2

nucl

We get for the decay energy:       2

atomatom YX cMMQ 

Negative bdecay: 

 

 eYX A

1Z

A

Z
Positive bdecay: 

        QcmcemcMcM   222

nucl

2

nucl
~YX 

  2

atomX cM    2

atomY cM 

            QcemcemZMcemZM   0YX 22

nucl

2

nucl

  2

atomX cM      22

atomY cemcM  

Here the decay energy:         2

atomatom 2YX cemMMQ  

Positive bdecay occurs only, if  

       keV 10222YX 22

atomatom   cemcMM
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 

 YX A

1Z

A

Z e

        QcmcMcemcM   22

nucl

22

nucl YX 

              QcemZMcemcemZM   0YX 2

nucl

22

nucl

The electron masses cancel out, so we get again for the decay 

energy:       2

atomatom YX cMMQ 

Electron capture (EC): 

  2

atomX cM      22 cemcYM atom  

Condition for energy (atomic masses) summarized: 

~YX A

1Z

A

Z  

 eNegative bdecay:     0YX MM

 

 eYX A

1Z

A

ZPositive bdecay:      emMM 2YX 

 

 YX A

1Z

A

Z eElectron capture:     0YX MM
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The initial state is only a nucleus: ii 

The final state is a nucleus + electron +(anti)neutrino: 
****

eff 




The matrix element becomes: rH
3***

,
ˆ dgV ifi ef
 b

The shape of the energy spectrum

Starting point:

Fermi’s „Golden rule”: 
   ffif EVE 




2

,

2




Partial decay 

constant Interaction

matrix-element

Final state 

density:
 

f

f
dE

dn
E 

Both factors can depend on the energy of the emitted particles

shape of the spectrum 

Calculation of the matrix element rH
3*

,
ˆ dgV ifi f
  b

(Hb is the interaction operator, g is the interaction „strength”)
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First approximation:                         and                        (plane waves)

p is the momentum of the electron and q is that of the neutrino. 

V is a normalization volume. 



rp 


i

e
V

e

1
 

rq 


i

e
V

1


Further approximations: 

• the integral will extend only in the region of the nucleus, since 

the     nuclear wave functions are zero outside.  But for this 

region             , so we get                             and

• Further, we take only the first term:



1




rp











 ...1

1



rp
i

V
e 











 ...1

1



rq
i

V


V
e

1
 

In this approximation 

the matrix element depends 

only on the nuclear states:  
ififfi M

V
grd

V
gV ,

3*

,

1ˆ1
   bH

 
f

iff
dE

dn

V
MgE 

2

2

,

2 12




In this approximation Fermi’s 

Golden rule becomes: 

depends only on the nucleus
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The simplest assumptions:

1) Since the decay is kinematically not complete (3 particles in the 

final state), the electron and the (anti)neutrino randomly 

„share” the energy available to them.  

2) Since the nucleus is much heavier than the electron and the 

neutrino, the kinetic energy of the recoil can be neglected:

all energy goes into the kinetic energy of the electron+neutrino

Calculation of the final density of states:

1) What does randomly share mean?

Every microstate in the common phase-space will be populated 

with equal probability.  

The number of electron states in 

the phase space (since the electrons 

are emitted in a random direction):                                                    
 

ppVne d4
2

1
d 2

3
 



Similarly, the number of antineut-

rino states in the phase space:                                                     
qqVn d4

2

1
d 2

3
 






 
f

f
dE

dn
E 
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The energy in the final state is:  EEE ef 

Where  22222 mccpEe  and   2222 cqEEE ef 

So we get
 

      
f

efe

f dE

dq
dpEE

c
mcE

c
V

dE

dn


2

2

222

2

2

6

11
4

2

1




Using              (at a given Ee)

(Ef=E0 because electron and neutrino get the total decay energy)
cdE

dq

f

1


 
 

     dpEEmcE
c

V
dE

dn
ee

f


2

0

222

56

2

2

2

4





We measure Ee and not p, so instead of dp we need dEe

Using  222 mcEpc e  we get
 

e

e

e dE

mcE

E

c
dp 




222

1

Substituting it back: 
 

    eeee

f

dEEEEmcE
c

V
dE

dn













2

0

222

2

33

2

2

4





And finally:       eeeeife dEEEEmcEM
c

gE 
2

0

222
2

,673

2

2

1



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Comparison of the theoretical and experimental spectra

Note that in the above calculation

there was no difference between 

negative and positive bdecay. 

However, experiment shows, 

that there is a difference!

R. D. Evans, The Atomic Nucleus (New York: McGraw-Hill, 1955)

The difference is due to the 

Coulomb-interaction between the 

electron (positron) and the nucleus!

Solution: instead of plane-waves, we 

should use the Coulomb wave-

functions for the outgoing charged 

particle. This leads to a correction 

factor:                            , where 

,  v is the velocity.

 






e

EZF e
1

,

v

2

2
Ze

 

 Cu64

29
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The Fermi-Kurie plot

Finally we get         eeeeejfe dEEEEmcEEZF
c

MgE 
2

0

222

673

2

,

2 ,
2

1




Experimental test: 

The detected counts in a given electron energy interval (Ee,Ee+dEe):

        eeeee EEEmcEEZFEN 
2

0

222,

From this we get

 
 

   
 e

eee

e
e EE

mcEEEZF

EN
EN 



















 0

2

1

222,

~

D. C. Camp and L. M. Langer, Phys.Rev. 129, 1782 (1963)

The Fermi-Kurie plot is linear, if 

the previous assumptions are valid 

(„allowed decays”). 

For „forbidden decays” the Taylor 

expansion                            should 

continue              additional 

dependence on p (and energy).   












 ...1

1



rp
i

V
e
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The total decay constant of the bdecay, the log(ft) value 

 
0

0

E

ee dEEThe total decay constant is the integral of the partial:

      
0

0

2

0

222

673

2

,

2 ,
2

1
E

eeeeejf dEEEEmcEEZF
c

Mg




Define the „Fermi integral” (its values are tabulated):

 
 

      
0

0

2

0

222

52
0 ,

1
,

E

eeeee dEEEEmcEEZF
mc

EZf

Since t can range through many orders of magnitude, usually one 

uses the log10(f∙t) value (t should be given in seconds)

   52

0673

2

,

2 ,
2

1
mcEZf

c
Mg jf 




Taking into account that                the f(Z,E0)∙t  (f∙t further on)
t

2ln


2

,

452

732
2ln

ifMcmg
tf


 This is depending only on the Mf,i
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The strength of the weak interaction 

For bdecays with shortest lifetimes   4...3log10  tf

These are the „super-allowed” decays. Among them those are the 

most interesting ones, where  0+→ 0+ super-allowed decay occurs. 

For these                   (theoretically), independent of the nucleus! 

The experiment confirms it! The measured value:  
2, ifM

 s 53090 tf

Using now                                    , the value of g can be determined:
2

,

452

732
2ln

ifMcmg
tf




 35 fmMeV 108,8  g

Comparing the strength of the four interactions 

With fundamental constants we create dimensionless quantities.

For example for the weak interaction: 5

3

2

10


cM
gG n

Strong interaction:                               ~1

Electromagnetic interaction:  1/137   ~10-2

Weak interaction:                                ~10-5

Gravity:                                                ~10-39

Similar 

dimensionless 

quantities  
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Remaining problems 

• Hb = ???

• neutrino             antineutrino??

• electron              positron??  

Solution 
In relativistic quantum mechanics the electron 

wave-function is a spinor with 4 components 

(describing the electron and the positron and 

the two spin positions) 






































e

e

e

e

e

Similarly, the neutrino wave-function is also a 

spinor with 4 components (describing the 

neutrino and the antineutrino and the two 

spin positions) 









































~

~

Relativistic quantum 

mechanics???

rH
3***

,
ˆ dgV ifi ef
 b

Therefore the product          in the integral may 

have 16 components (any combination = 42)!

**

e

Remember: 
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The  Hb operator can act differently on these components 

Using the superposition principle 

16 components                      another 16 components!   

Behaviour Number of 

components

Scalar 1

Pseudoscalar 1

Vector 4

Axial-vector 4

Antisymmetric tensor 6


























0

0

0

0

653

642

541

321

aaa

aaa

aaa

aaa

The  Hb operator also has 16 components! 

(…of quantities with known symmetry)
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Therefore the  Hb operator also consists of 5 terms:

Hb = Hb,S + Hb,P + Hb,V + Hb,A + Hb,T

scalar 

pseudoscalar

vector 

axial vector 

tensor (antisymmetric)

• Pseudoscalar can NOT make any transition! (can be shown)

Angular momentum and selection rules 

~YX A

1Z

A

Z  

 e

ssJJ  eYX vector equation. Denote  

se =1/2, and s =1/2, so
 
 









           0  ,0

1  ,0  ,1   ,1

z

z

j

j
j

jss  e

↑↑
↑↓

• scalar and vector  causes:          j = 0  (Fermi-transitions)

• axial vector and tensor causes: j = 1  (Gamow-Teller transitions)

Can be shown:

Selection rules:  JY = JX for Fermi-transitions (DJ = 0)

JY = JX±1, or JY = JX for Gamow-Teller-transitions (DJ = 0, ±1)


