

Contents

- Options for releasing nuclear energy
- The fission process
- Mass-distribution of the fragments
- Energy balance of fission
- The fission barrier
- Fission cross sections
- Fission neutrons
 - Emission time and energy of fission neutrons
 - Delayed neutrons
- Chain reaction with neutrons
- · Self test questions

Energy balance of the fission ²³⁵U(n,f

Energy is released by several processes. This influences the time- and spatial distribution of the heat source

Rinelic energy of the haginents	168 MeV	(82,0 %)
Energy of the β -particles of the fragments	8 MeV	(3,9 %)
Total energy of the fission neutrons	5 MeV	(2,4%)
Total energy of the prompt γ -rays	7 MeV	(3,4%)
Energy of the y -radiation of the fragments	5 7 MeV	(3,4 %)
Energy of the antineutrinos emitted during		
the β -decay of the fragments	10 MeV	(4,9 %)
the β-decay of the fragments TOTAL	10 MeV 205 MeV	(4,9 %) (100%)

The mean value

depends on the

and also on the

fissile isotope

incoming neutron

FWHM: ~ 2.5

(not depending on the fissile isotope)

Figure 13.7

energy of the

Chain reaction with neutrons
The "neutron-budget"
What can happen with a neutron?
Escapes from the reactor
• Gets absorbed (n,γ)
• Induces fission (n,f)
Neutron "generations" ^{neutrons}
$N_1, N_2, N_3, \dots N_i, N_{i+1}, \dots$ fission neutrons
$N_{ m i}$ denotes the number
in the <i>i</i> -th generation
Effective neutron multiplication factor: $k_{eff} = \frac{N_{i+1}}{N_i}$ (definition)
$\int k_{eff} < 1$, chain reaction decreases ("subcritical")
If $\begin{cases} k_{eff} = 1, \text{ chain reaction is stationary (,,critical'')} \end{cases}$
$k_{e\!f\!f} > 1$, chain reaction increases ("supercritical")

	<i>L_n</i> (iviev)	$T_{i}(s)$	eta_i (%)	Typical precursor			
1	0,25	56	0,020	⁸⁷ Br, ¹⁴² Cs			
2	0,56	23	0,143	⁸⁸ Br, ¹³⁷ l			
3	0,43	6,2	0,128	⁸⁹ Br, ¹³⁸ I			
4	0,62	2,3	0,255	⁹⁴ Kr, ¹³⁹ I, ¹⁴³ Cs			
5	0,42	0,6	0,074	¹⁴⁰ I, ¹⁴⁵ Cs			
6	0,51	0,2	0,030	⁸⁷ As, ¹⁴³ Xe			
Total yield: β = 0,65 % Delayed neutron ratio:				$\beta = \frac{\text{(delayed n)}}{\text{(total n)}} \sim$	(delayed n) (prompt n)		
Dela	Delayed neutrons' emission rate after the fission:						

26

Moderator properties and materials

A material is appropriate for slowing down neutrons, if

- it has small A (large energy-transfer in one collision),
- it has large neutron-scattering cross-section,
- it has small neutron-absorption cross-section.

A material with these properties is called moderator. Best moderator is heavy water and pure graphite

In light water the hydrogen absorbs neutrons by neutron capture: ${}^{1}H + n \longrightarrow {}^{2}H + \gamma$

The possible realisations of self-sustaining chain reaction

Moderator material
Heavy water, pure graphite
Light (natural) water
No need for a moderator (nuclear weapon)

Remember: the moderator HELPS the chain-reaction!

Self-test questions (cont.)

- 14. What is the role of the delayed neutrons in the chain reaction?
- 15. What is prompt-criticality? What condition must be fulfilled to avoid it?
- 16. How is the reactivity defined? What is its unit?
- 17. Can the reactivity be negative? What does that mean?
- 18. What kind of properties should have a good moderator material?
- 19. What kind of effect has the moderator on the chain reaction?
- 20. What are the options that can be used (alone or combined) to increase the ratio of "new fission" for obtaining a self-sustaining chain reaction?
- 21. By what combinations of enrichment and moderator are possible to realise a self-sustaining chain reaction?

 Self-test questions (cont.) 7. The height of the fission barrier is about 7-8 MeV for the uranium isotopes. How is it possible that a thermal neutron (energy ~0,03 eV) can induce fission in ²³⁵U? 8. Why can a thermal neutron induce fission in ²³⁵U, and can not induce fission in ²³⁸U, if the fission barrier is about the same height for both isotopes? 9. How does the fission cross section depend on the
 neutron velocity for very slow neutrons, and for the ²³⁵U(n,f) reaction? 10. What kind of distribution describes the number of emitted neutrons? What is the mean value for ²³⁵U(n_{th},f) 11. How are the delayed neutrons produced? How much is their proportion? What determines their "delay"? 12. What may happen to a neutron in a reactor? Which process is important to maintain a chain reaction? 13. How is k_{eff} defined? What is its relation to the behaviour of the chain reaction?