

Scatterings: special nuclear reactions			
Characteristics: $a = c$, (and $b = d$), The type (composition) of the particles does not change			
Elastic scattering: the particles (nuclei) do not get excited, total kinetic energy is conserved			
Inelastic scattering: nuclei get excited (followed by γ-decay), the total kinetic energy is NOT conserved.			
Examples	Description N	lotation	
$n+{}^{235}_{92}U \Longrightarrow {}^{235}_{92}U+n'$	elastic n-scattering (n,n')	${}^{235}_{92}$ U(n,n') ${}^{235}_{92}$ U	
$n+{}^{235}_{92}U \Longrightarrow {}^{235}_{92}U+n'+\gamma$	inelastic n-scattering (n,n'γ)	${}^{235}_{92}U(n,n'\gamma){}^{235}_{92}U$	
$n+{}^{235}_{92}U \Longrightarrow {}^{236}_{92}U+\gamma$	n-capture with γ -emission, radiating capture, (n, γ)	${}^{235}_{92}U\!\left(n,\!\gamma\right){}^{236}_{92}U$	
$\alpha + {}^9_4 \text{Be} \Rightarrow {}^{12}_6 \text{C} + n$	(α,n) reaction	${}^{9}_{4}\text{Be}(\alpha,n){}^{12}_{6}\text{C}$	
$n+{}^{59}_{27}Co \Rightarrow {}^{58}_{27}Co+2n$	(n,2n) reaction	$^{59}_{27}$ Co(n,2n) $^{58}_{27}$ Co	
BME Inst. of Nuclear Techniques Nuclear and Reactor Physics Fundamentals 5			

Arrange the masses on the left side: $(\underline{M_a + M_b - M_c - M_d}) \cdot c^2 = T_c + T_d - T_a - T_b = O$ The name of Q is: **reaction energy** TIts physical interpretation: according to the second equation $(T_c + T_d) - (T_a + T_b) = Q$ $Q = T_{final} - T_{initial}$ Q > 0The reaction produces kinetic energy
(exotherm, exoerg, "energy producing" reaction) Q < 0The reaction consumes kinetic energy
(endotherm, endoerg, "energy consuming") Q = 0Kinetic energy does not change in the reaction
(for example: elastic scattering)

$(M_a + M_b - M_c - M_d) \cdot c^2 = T_c + T_d - (T_a + T_b) = Q $ ^(*)	
Energy threshold at endoterm reactions (Q <0). Since $T_c + T_d \ge 0$, we get $(T_a + T_b) \ge -Q \ge 0$. In words: the particles in the initial state must have at least that much kinetic energy for the reaction to occur! (In laboratory system usually more kinetic energy is	
needed, since the momentum should also be conserved)	
The reaction energy and the masses of the particles:	
From the (*) equation $Q = (M_a + M_b - M_c - M_d) \cdot c^2$	
$Q = (M_{initial} - M_{final}) \cdot c^2$	
Thus, the reaction energy is determined by the masses!	
<u>Comment</u> : Here M_{ar} M_b etc. are not always rest-masses! For example if the particle <i>d</i> is generated in an excited state of E_x	
excitation energy, then $M_d = M_d(0) + E_x/c^2$	
Rest mass in ground state	
BME Inst. of Nuclear Techniques Nuclear and Reactor Physics Fundamentals	8

Cross section concept

Nuclear reactions are stochastic processes. (Remember: radioactive decay is also a stochastic process!) They can be described only by random variables.

Introductory model:

Consider a "darts" panel with $A = 1 \text{ m}^2$ area. There are N = 100 small-area ($\sigma = 1 \text{ cm}^2$) objects scattered on that, randomly. A blindfold player throws arrows at the panel. From the many arrows thrown, 200 arrows hit the panel during an hour (n = 200/h). Estimate, how many objects are expected to be hit in that hour?

Macroscopic cross-section	
Definition $\sum = \rho \cdot \sigma \left(\frac{1}{cm^3} \cdot cm^2\right)$. Here ρ is the particle-density	
The name of Σ is: total macroscopic cross-section.	
The unit of the macroscopic cross-section is: 1/length (!!!)	
Consider a parallel beam of particles with a ϕ_0 initial flux! We calculate the flux at a distance <i>x</i> inside a material $\phi(x)$	
Consider first an <i>A</i> area of the sample The number of target nuclei in the <i>dx</i> layer is: $dN = \rho \cdot A \cdot dx$	
The reaction rate in the dx layer:	
$dR = \phi(x) \cdot dN \cdot \sigma = \phi(x) \cdot \rho \cdot \sigma \cdot A \cdot dx$	
The number of particles reacted in $\phi(x)$	
the $(x,x+dx)$ layer will be missing from the incoming flux: $-d\phi = \frac{dR}{A} = \phi(x) \cdot \rho \cdot \sigma \cdot dx = \phi(x) \cdot \Sigma \cdot dx$	
BME Inst. of Nuclear Techniques Nuclear and Reactor Physics Fundamentals 19	

Double additivity of the cross-sections

Every particular nuclear reaction has its own cross-section!

I. Additivity: same reaction partners, different reactions, (mutually exclusive)

Example: the reactions of a neutron (with given energy) and a target nucleus can be grouped in 2 mutually exclusive groups: • Scattering (s) σ_s - the n is still there after the reaction

• Absorption (a) σ_a - the n "disappears" in the reaction

After the absorption several "outcomes" are also possible. For example:

- radiating capture (c) $\sigma_c(n,\gamma)$ reaction
- fission (f) σ_f (n-induced fission)
- etc.

BME Inst. of Nuclear Techniques Nuclear and Reactor Physics Fundamentals

21

23

II. Additivity: This relates to a target material composed of different elements! Suppose, that a *n*-flux interacts with a composite target, which contains several, different materials. The particle densities are: $\rho_1, \rho_2, \rho_3, ..., \rho_N$ The different materials attenuate the n-flux independently from eachother, which means $\phi(x) = \phi(0) \cdot e^{-\Sigma_t(1)\cdot x} \cdot e^{-\Sigma_t(2)\cdot x} \cdot e^{-\Sigma_t(3)\cdot x} ...$ From this we get easily: $\Sigma_t(all) = \Sigma_t(1) + \Sigma_t(2) + \Sigma_t(3) + ... + \Sigma_t(N)$ This is the second additivity of the cross sections – related to composite materials

<u>Warning</u>! Such kind of additivity can **NOT** be established for the microscopic cross sections!

BME Inst. of Nuclear Techniques Nuclear and Reactor Physics Fundamentals

Mean free pat	th and Σ_{total}
Mean free path: the average distance which can be done by a particle without any interaction	
We saw earlier: $\phi(x) = \phi_0 e^{-\Sigma_t \cdot x}$	
This shows what part of the initia without any interaction.	I flux reaches the x distance
The "probability density" for one reaching x distance without any i (Note: this probability density is n	single particle nteraction: $\frac{\phi(x)}{\phi_0} = e^{-\Sigma_t \cdot x}$ ot "normalised")
The expectation value of the dis	stance without interaction:
$< x >= \frac{\int_{0}^{\infty} x \cdot e^{-\Sigma_{t} x} dx}{\int_{0}^{\infty} e^{-\Sigma_{t} x} dx} = \frac{\left(\frac{1}{\Sigma_{t}^{2}}\right)}{\left(\frac{1}{\Sigma_{t}}\right)} = \frac{1}{\Sigma_{t}}$	The mean free path: $\Lambda = \frac{1}{\Sigma_t}$
3ME Inst. of Nuclear Techniques Nuclear	and Reactor Physics Fundamentals 24

Thank you	u for your attention !
These slides are upl	oaded in the "Files" menu item of the
<u>Teams Group</u> : Nucle	ar and Reactor Physics Fundamentals,
in <u>Channel</u> : Nucle	ar Physics 3. Nuclear Reactions (22. Oct.)
At the end of the slid	es there are some "Self-test questions".
Please try to answer	them to check your own understanding.

Self-test	t questions	
 Is there any difference Give rationale of your a p(α,α')p, ¹H(⁴He,⁴He')¹ Complete the following ⁵⁹Co(n,γ)xx, ¹⁶O(²H,⁶Li What kind of reaction of 4. How can energy be pro- energy is conserved? The main reaction for ² H+³H→⁴H 	between the following reactions? answer! H, $\alpha(^{1}H, ^{1}H')\alpha$ reactions! i)xx, ⁵⁸ Ni(n,xx) ⁵⁷ Ni, ⁵⁸ Ni(xx,yy) ⁶¹ Zn occurs in the Rutherford experiment oduced from nuclear reactions, if the fusion energy production is: He + n + 17.6 MeV	? e
 How is the released energy shared between the reaction products in Center of Mass System? 6. What kind of particles are accelerated by the LHC? To what energy? For what purpose? 		
BME Inst. of Nuclear Techniques	Nuclear and Reactor Physics Fundamentals	31 ₃₁

Self-test questions (cont.)	
 36% of the initial flux of thermal neutrons (n_{th}) is absorbed in 20 cm thick water layer. 	C
a) What part of the neutron-flux is absorbed in a 5 m thick wat layer (like in the Training Reactor of BME)?	er-
b) Calculate the macroscopic absorption cross-section of wate for n	ər
 c) Neglect the absorption by the oxygen, and calculate the microscopic absorption cross-section of hydrogen for n. 	
8. Why does the total cross-section determine the mean free path Why not the absorption cross-section for example?	1?
9. Why is the following equation wrong?	
$O_{total} = O_s + O_e + O_i + O_a + O_c$ Here the letters in the indices denote the following:	
s – neutron scattering e – neutron elastic scattering	
i – neutron inelastic scattering a – neutron absorption	
c – neutron capture: (n,γ) reaction	
BME Inst. of Nuclear Techniques Nuclear and Reactor Physics Fundamentals	32

Self-test questions (cont.)	
11. Calculate the macroscopic absorption cross section of BaTiO ₃ for thermal neutrons! Data: $\sigma_a(Ba) = 1,3$ barn, $\sigma_a(Ti) = 6,09$ barn, $\sigma_a(O) = 0,19$ millibarn, molar mass: 233,192 g/mol, density = 6,02 g/cm ³ .	
 12. Suppose that a 1 MeV neutron slows down in graphite, (¹²C) with only "head-on" collisions. How many collisions are needed to reach 0,1 eV energy? How many collisions, if it would slow down in heavy water? 	
13. What are the conditions that 1/v cross-section occurs in a reaction?	
14. What is the cause of the resonances in the cross sections at certain energies?	
15. What are the characteristic parameters of the resonances?	?
BME Inst. of Nuclear Techniques Nuclear and Reactor Physics Fundamentals 33	33