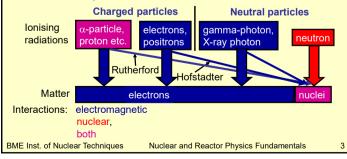
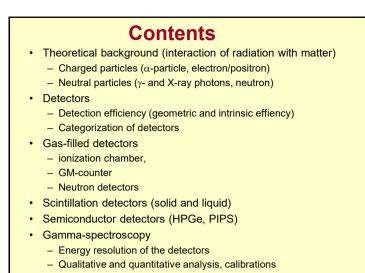
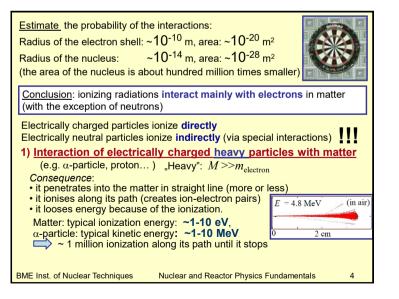
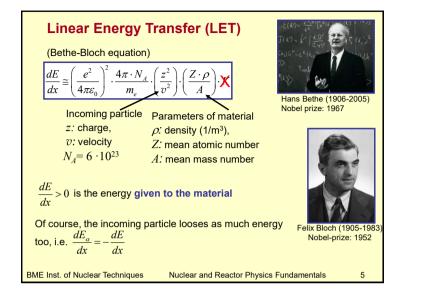

2

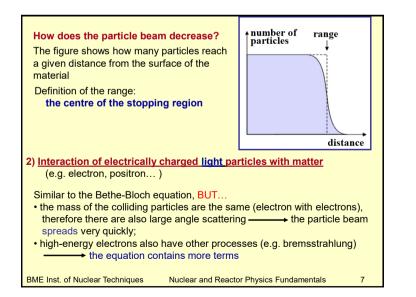


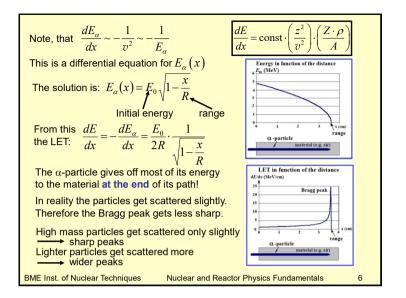

Interaction between radiation and matter

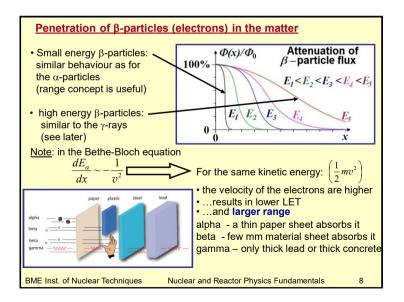
We don't have senses to detect radioactive radiation directly. (It's not just radioactivity: we don't detect ultrasound, ultraviolet radiation, radio waves, etc. directly)

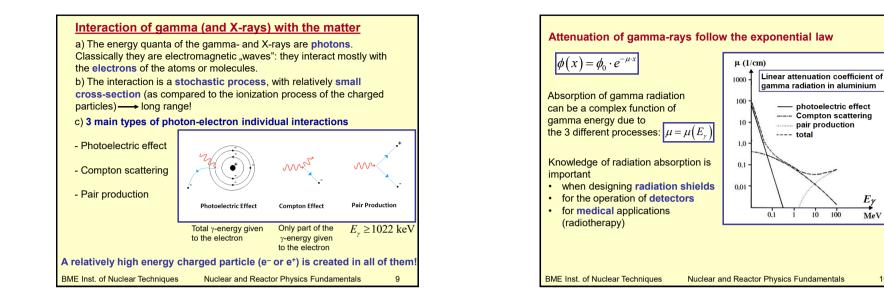

In the following, we will only talk about ionizing radiation!

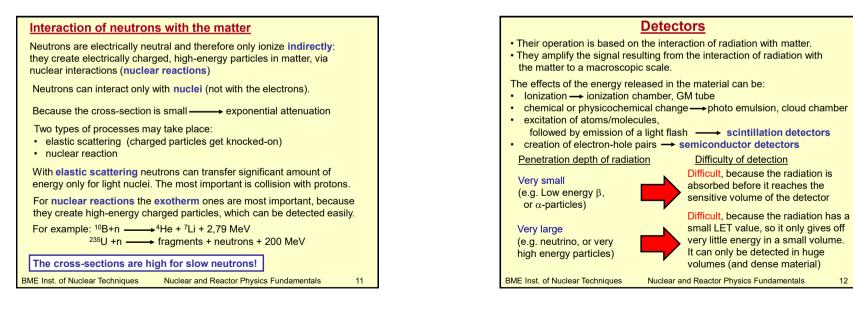

lonizing radiation: energy transferred to matter in **one interaction** is sufficient to rip off electrons from the atoms or molecules to form **ions**.

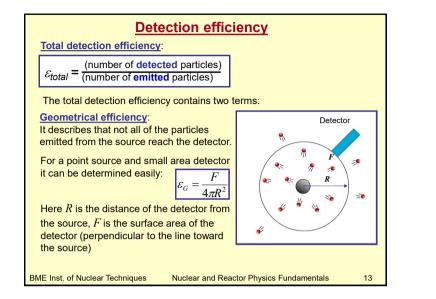


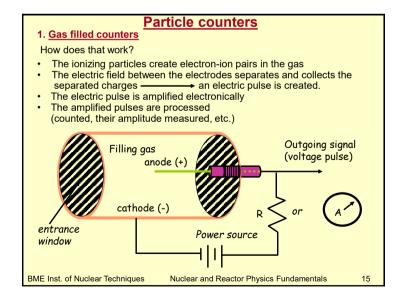


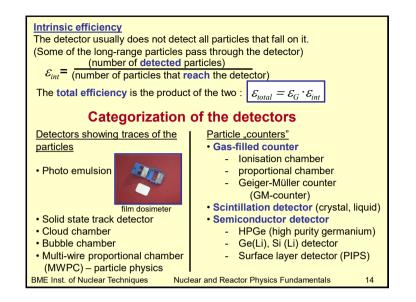

BME Inst. of Nuclear Techniques Nuclear and Reactor Physics Fundamentals

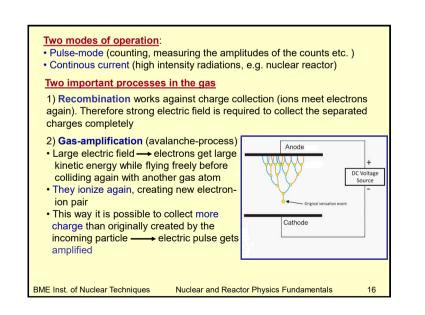












Types of gas-filled detectors:

· Ionisation chamber

- We collect all the primary charges and ions, but only that!
- Low amplitude signals, high post-amplification required.
- Suitable for measuring the energy deposited by the particle in the gas counter

· Proportional chamber

- gas amplification still in the proportional region
- Signals with larger amplitudes
- Still suitable for measuring the energy of the particle (calibration needed)

• Geiger-Müller counter (GM-counter)

- very large gas amplification,
- signals with large amplitudes,
- signal amplitude is not depending anymore on the energy deposited in the gas

17

19

- Not suitable for measuring the energy, only for counting!

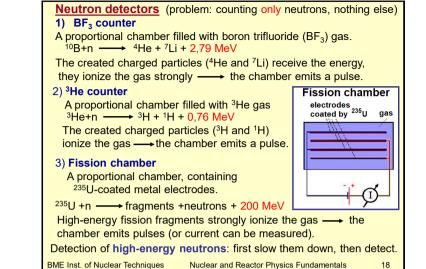
BME Inst. of Nuclear Techniques Nuclear and Reactor Physics Fundamentals

Scintillation detectors

In some materials, tiny light flashes (scintillation) occur when energy is received from the impacting radiation.

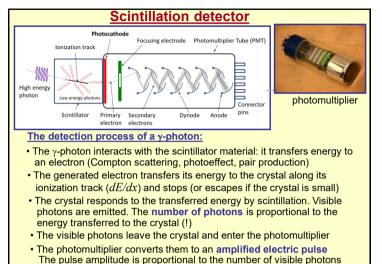
- Fluorescence instant flash (t <10⁻¹⁸ s)
- Phosphorescence delayed light emission (t > 10⁻¹⁸ s)

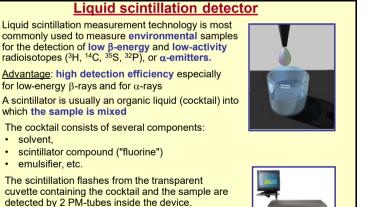
The scintillating material can be


- solid
- liquid
- gas
- inorganic
- organic

Scintillation was discovered and used already when nuclear physics began: Spinthariscope (1903 W. Crookes)

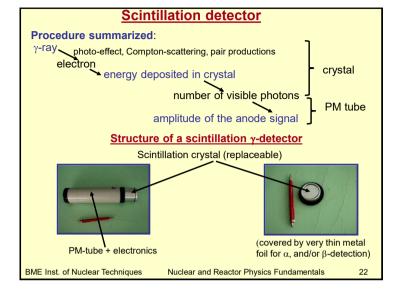
A thin layer of ZnS could be watched through a magnifying glass. Some small amount of radium was mixed (Ra is α -particles emitter). In ZnS, tiny flares (scintillations) were generated by α -particles.

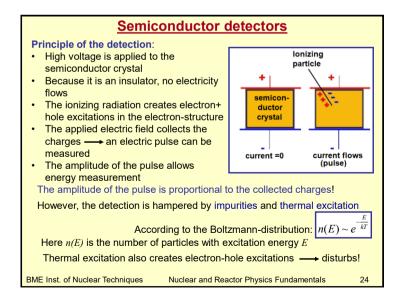

BME Inst. of Nuclear Techniques Nuclear and Reactor Physics Fundamentals


Commonly used scintillation detectors in nuclear measurements

Inorganic scintillator crystals

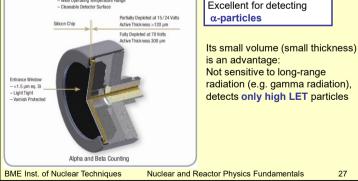
Most	of them are io	nic crystals, some alkali halide			
(alkali metal and halogen compound)					
•	NaI(Tl)	sodium iodide (doped with thallium)			
•	CsI(Tl)	caesium iodide (doped with thallium)			
•	LiI(Eu)	lithium iodide (doped with europium)			
•	CaF ₂ (Eu)	calcium fluoride (doped with europium)			
 Doping elements are in very small quantity (only "traces") Concentration of e.g. Eu is only ~1/1000 in the crystal They are the "activators", they assure the scintillation 					
Large : Dual a	sizes can be g dvantage: hig lar	prown from crystals the atomic density (solid) \rightarrow High efficiency ge size γ -detector!			
	ition is no long nultiplier dev	ler being watched with naked eye! ces are used			
ME Inst. of N	luclear Technique	Nuclear and Reactor Physics Fundamentals	20		

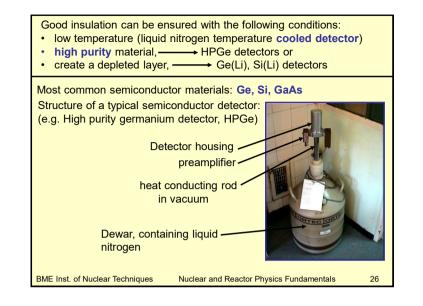

BME Inst. of Nuclear Techniques Nuclear and Reactor Physics Fundamentals 21

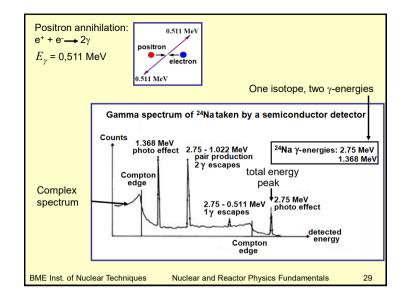


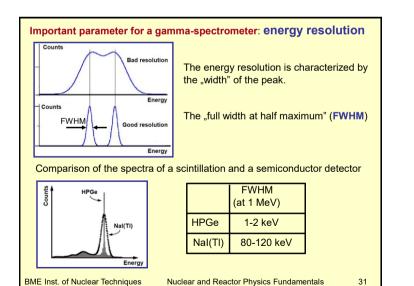
23

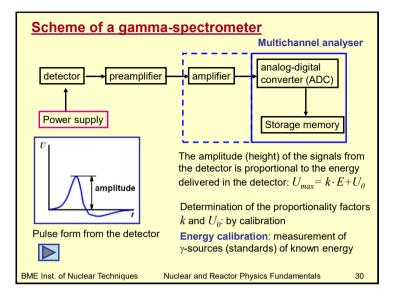
Name of the commercially available equipment: **TriCarb** (tritium and radiocarbon)

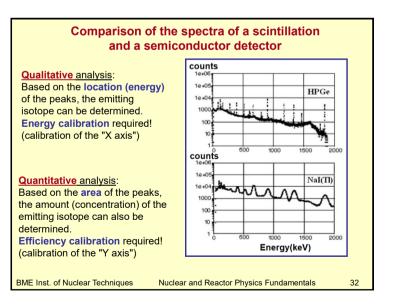

BME Inst. of Nuclear Techniques Nuclear and Reactor Physics Fundamentals



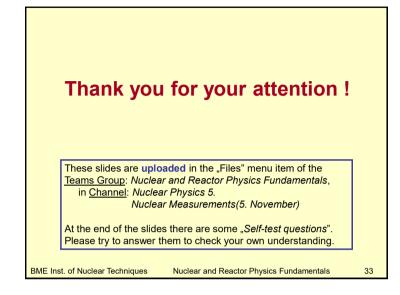

Ionization chamber	Semiconductor detector
The gas is good insulator	Medium electrical insulator (at room temperature)
The ionizing radiation creates electron-ion pairs	The ionizing radiation creates electron-hole pairs
Necessary energy for creating electron-ion pairs $\sim 1 - 10 \text{ eV}$	Necessary energy for creating electron-hole pairs $\sim 0.1 - 0.5$ eV
The electric field collects the charges → electric pulse	The electric field collects the charges → electric pulse
Density of gas is small —→small intrinsic efficiency	Density of a crystal is high → high intrinsic efficiency
The condition for detecting a srr residual current → it shou	nall pulse is to have very small Id be a good insulating material !!!


Passivated Implanted Planar Silicon (PIPS) surface-layer detector Suitable for detecting short-range charged particles (mostly α-particles). The thin active detection layer is formed at the surface of the detector. CAM PIPS Detector – Series CAM - Aya, bet Counting in Hard Environments - Kine Operating Respective Repe - Operating Respective Repe - Excellent for detecting





Gamma-spectroscopy
 <u>Its importance</u>: gamma rays come out of the sample, so they can be measured "from the outside" without destroying the sample (non-destructive method) several elements can be determined at the same time both qualitative and quantitative measurements are possible!
Remember: only the energy delivered to the detector can be measured
Problem: due to the primary and secondary processes in the detector, the spectrum has a rather complex structure
<u>Primary processes</u> : Photo effect (line-structure; it would be nice if only it was alone!) Compton scattering (continuous energy distribution) Pair-production (can be the starting point for secondary processes)
<u>Secondary processes</u> : Compton scattering + photo effect —→ total gamma energy (good!) pair production + positron annihilation → "escape" peaks etc
BME Inst. of Nuclear Techniques Nuclear and Reactor Physics Fundamentals 28



34

Self-test questions (cont.)

- 7. What are the operational modes of gas-filled counters? Explain!
- 8. How do neutron-detectors work that are based on gas-filled counters? What is the energy range of the neutrons for which they are the most sensitive?
- What processes take place until a γ-photon gets finally detected in a Nal(TI) scintillation detector?
- 10. Why are γ-spectra so complex? What kind of peaks may appear in them? Explain!
- 11. What are the charge-carriers inside a semiconductor detector? How are they produced? About how much energy is needed?
- 12. Why a semiconductor detector needs to get cooled?
- 13. Compare a Nal(TI) scintillation and a HPGe semiconductor detector performance, when detecting γ-rays!
- 14. What are the energy- and efficiency calibrations of a γ -detector?

35

BME Inst. of Nuclear Techniques Nuclear and Reactor Physics Fundamentals

Self-test questions

- 1. What is the main form of energy-loss for an alpha-particle when it enters into some material?
- 2. Is the exponential attenuation law valid for alpha-radiation? Explain!
- 3. Compare the behaviour of alpha- and beta-radiation when they enter into some material!
- 4. What are the main interactions of gamma-rays with matter? Describe their main features!
- 5. What are the processes that enable detecting neutrons? Describe their features!
- 6. An α -detector (PIPS) has 2 cm² sensitive surface, and is placed in vacuum at 50 cm distance from a point-like radioactive source. Its intrinsic efficiency is 100%. We detect 100 counts/s. What is the activity of the α -source? Why is it necessary to place this experiment in vacuum?

BME Inst. of Nuclear Techniques Nuclear and Reactor Physics Fundamentals