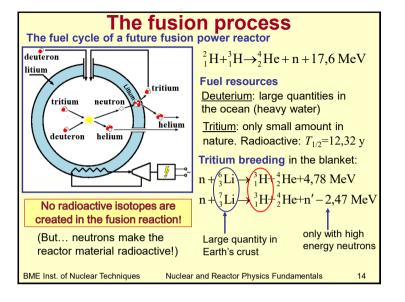
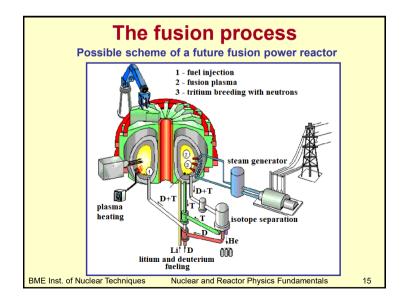
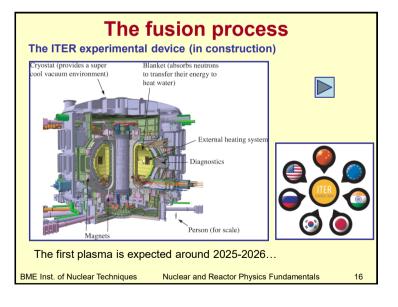
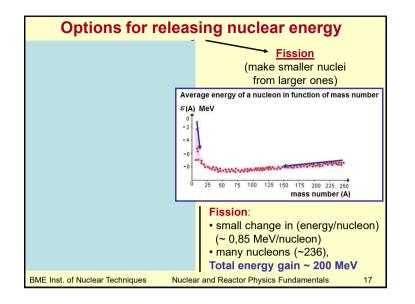
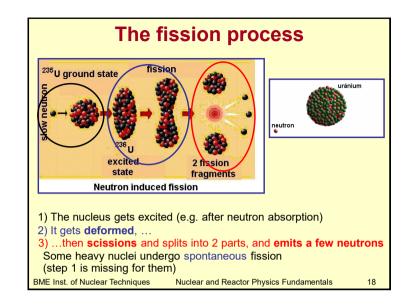

The fusion process Possible reactions of light nuclei not involving any weak interaction:						
$p = {}^{1}H$ (proton) $D = {}^{2}H$ (deuteron)	D + T D + D	\rightarrow \rightarrow \rightarrow	⁴ He (3.5 MeV) + n (14.1 MeV) T (1.01 MeV) + p (3.02 MeV) (50%) ³ He (0.82 MeV) + n (2.45 MeV) (50%)			
$T = {}^{3}H$ (tritium)	D + ³ He T + T		⁴ He (3.6 MeV) + p (14.7 MeV) ⁴ He + 2 n + 11.3 MeV			
Which one to choose??		\rightarrow \rightarrow				
	$D + {}^{6}Li$ $p + {}^{6}Li$		⁴ He (0.5 MeV) + n (1.9 MeV) + p (11.9 MeV) (6%) 2 ⁴ He + 22.4 MeV ⁴ He (1.7 MeV) + ³ He (2.3 MeV)			
	³ He + ⁶ Li	\rightarrow	2 ⁴ He + p + 16.9 MeV			
$ \begin{array}{c} p+{}^{11}\!B & \rightarrow & 3{}^{4}\!He + 8.7MeV \\ \\ \mbox{BME Inst. of Nuclear Techniques} & \mbox{Nuclear and Reactor Physics Fundamentals} & 8 \\ \end{array} $						

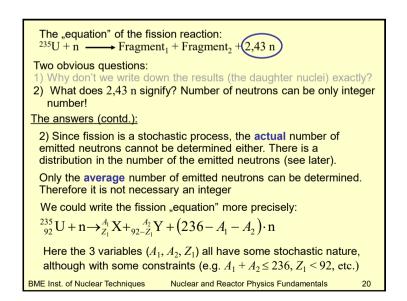


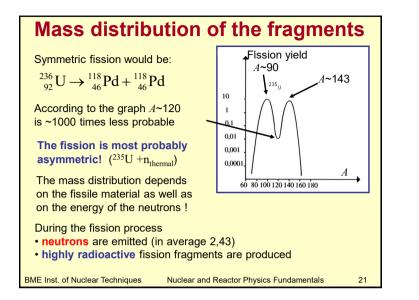




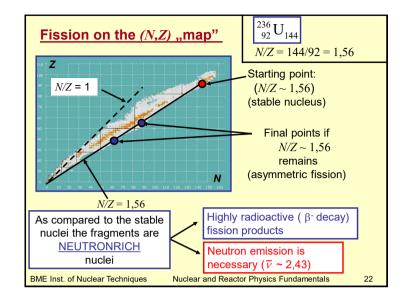








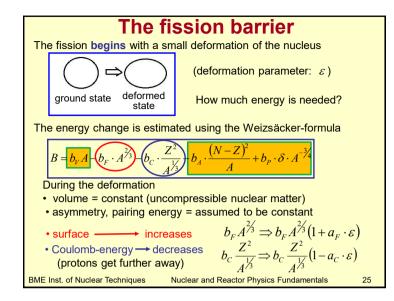
The "equation" of the fission reaction: 235 U + n \longrightarrow Fragment ₁ + Fragment ₂ + 2,43 n		
 Two obvious questions: 1) Why don't we write down the results (the daughter nuclei) exactly? 2) What does 2,43 n signify? Number of neutrons can be only integer number! 		
The answers:		
1) The composition (<i>Z</i> , <i>A</i>) of the fragments cannot be defined more precisely, since the fission process is stochastic also in this respect!		
The nucleus splits into two parts as if a blind cook would cut the onion. In most cases the two parts will not be equal sized.		
The fission is not a deterministic process and mostly occurs asymmetrically!		
BME Inst. of Nuclear Techniques Nuclear and Reactor Physics Fundamentals 19		

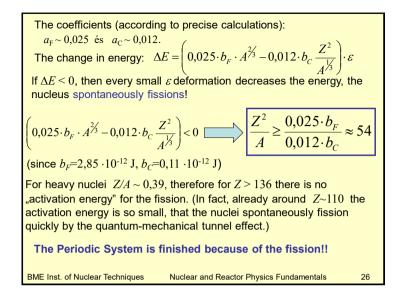


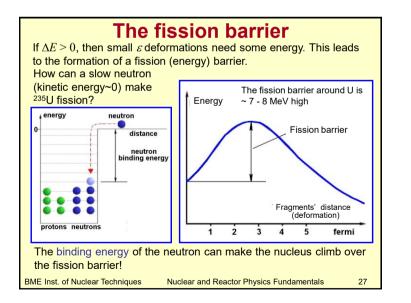
Energy	balance	of the	fission	²³⁵ U(n,f)
--------	---------	--------	---------	-----------------------

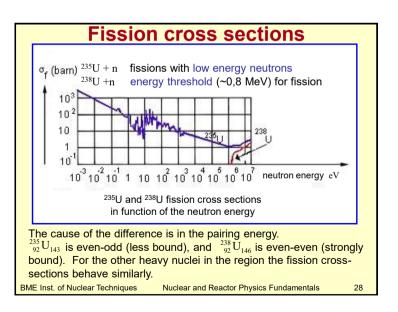
Energy is released by several processes. This influences the timeand spatial distribution of the heat source

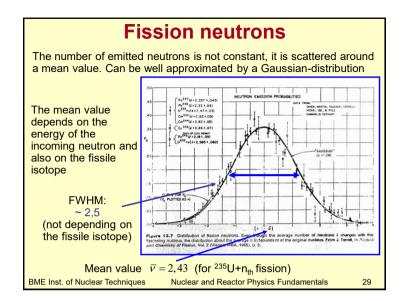
Kinetic energy of the fragments	168 MeV (82,0 %)
Energy of the β -particles of the fragments	8 MeV (3,9 %)
Total energy of the fission neutrons	5 MeV (2,4 %)
Total energy of the prompt γ-rays	7 MeV (3,4 %)
Energy of the γ –radiation of the fragments	7 MeV (3,4 %)
Energy of the antineutrinos emitted during	
the β -decay of the fragments	10 MeV (4,9 %)
TOTAL	205 MeV (100%)
Short range (in the fuel and close to it)	n í
Medium range (coolant, reactor vessel,	shielding) - spatial
Very long range (escaping)	ː
Instantly (prompt) Later (determined by their half-lives)	- time
BME Inst. of Nuclear Techniques Nuclear and Reactor Physics	Fundamentals 23

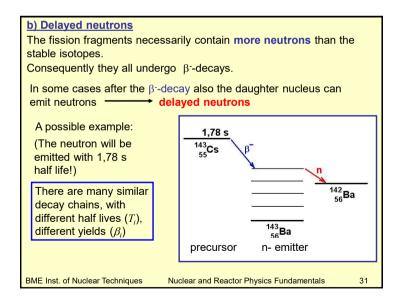


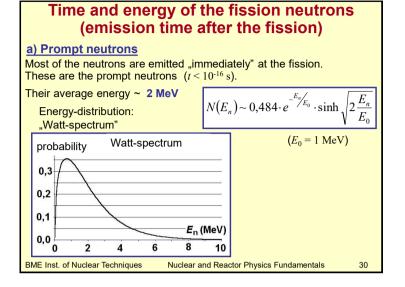

Example: suppose that the fission of ²³⁶U occurs the following way: ²³⁶U \longrightarrow ⁹⁰Kr + ¹⁴³Ba + 3n Calculate the distance of the two fragments, at the scission point, when only Coulomb-forces act on them! Their total kinetic energy will be 168 MeV.

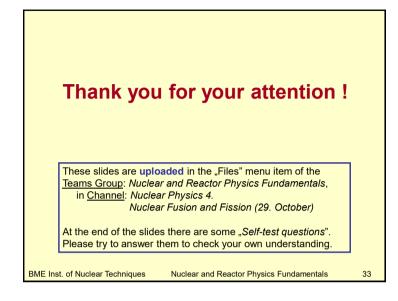

Solution:

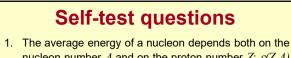

At the scission point they have only Coulomb potential energy, this is transformed to kinetic energy:


 $\frac{1}{4\pi\varepsilon_0} \cdot \frac{Z_1Z_2e^2}{d} = 168 \cdot 1, 6 \cdot 10^{-13} \text{ J} \quad \text{Here } Z_1 = 36 \text{ (Kr)}, Z_2 = 56 \text{ (Ba)}$ From this: $d \sim 17,3 \text{ fm}$ Using $R = r_0 \sqrt[3]{A}$ we get for the radius of the two nuclei: $R_{\text{Kr}} = 5,4 \text{ fm}, R_{\text{Ba}} = 6,3 \text{ fm}$ The geometry of the "scission" is: BME Inst. of Nuclear Techniques Nuclear and Reactor Physics Fundamentals 24








Delayed neutrons are grouped into 6 groups (according to their half lives)							
	$E_n(MeV)$	$T_{\rm i}(s)$	β_i (%)	Typical precursor			
1	0,25	56	0,020	⁸⁷ Br, ¹⁴² Cs			
2	0,56	23	0,143	⁸⁸ Br, ¹³⁷ l			
3	0,43	6,2	0,128	⁸⁹ Br, ¹³⁸ I			
4	0,62	2,3	0,255	⁹⁴ Kr, ¹³⁹ I, ¹⁴³ Cs			
5	0,42	0,6	0,074	¹⁴⁰ I, ¹⁴⁵ Cs			
6	0,51	0,2	0,030	⁸⁷ As, ¹⁴³ Xe			
	Total yield: β = 0,65 % Delayed neutron ratio:			$\beta = \frac{\text{(delayed n)}}{\text{(total n)}} \sim$	(delayed n) (prompt n)		
D	Delayed neutrons' emission rate after the fission:						
$N(t) = \sum_{i=1}^{6} \beta_i \cdot e^{-\ln 2 \cdot \frac{t}{T_i}}$ Their role is very important in the control of the chain reaction!!							
BME Inst. of Nuclear Techniques Nuclear and Reactor Physics Fundamentals 32							

Self-test questions (cont.)

- The height of the fission barrier is about 7-8 MeV for the uranium isotopes. How is it possible that a thermal neutron (energy ~0,03 eV) can induce fission in ²³⁵U?
- 8. Why can a thermal neutron induce fission in ²³⁵U, and can not induce fission in ²³⁸U, if the fission barrier is about the same height for both isotopes?
- 9. How does the fission cross section depend on the neutron velocity for very slow neutrons, and for the $^{235}U(n,f)$ reaction?
- 10. What kind of distribution describes the number of emitted neutrons? What is the mean value for $^{235}U(n_{thr}f)$?
- 11. How are the delayed neutrons produced? How much is their proportion? What determines their "delay"?

35

- nucleon number A and on the proton number Z: $\varepsilon(Z,A)$. How is it possible that the graph on slide 4 depends only on A? What happened with the Z dependence?
- 2. Why is neutron emission necessary in fission process? (Use the "energy valley" picture in the explanation)
- 3. Why is it necessary that the fission fragments are radioactive? What kind of radiation they emit?
- 4. What percentage of the energy released in fission heats the fuel rods and its close environment?
- 5. What percentage of the fission energy heats the reactor later (not promptly, after the fission)? What determines its time-behaviour?
- 6. Which terms of the Weizsäcker formula play a role in the existence of the fission barrier? Which role they play?

BME Inst. of Nuclear Techniques Nuclear and Reactor Physics Fundamentals

34