
Simulation of a radioactive decay chain 
 
 
The radioactive nuclei are not „aging”, which means that it is not possible to 
determine how „old” is a selected atom (i.e. how long time ago was it created). 
Similarly, it is not possible to foresee exactly in which moment it will decay. 
Only probability statements can be made about their decay – similar to the 
lottery. The fact, that every moment is similar to them (they are not „aging”) 
means that the probability of their decay is the same for every small unit of 
time. In short, the decay probability per unit time is constant. This is called 
decay constant and denoted by . Since this is a probability „per unit time”, 
(probability density) therefore its unit is [1/s]. From the definition it follows that 
the probability of the decay of an atom over time t is: ·t.  
 
Let us denote the number of radioactive atoms in the sample by N(t) (N is a 
very large number). We expect that during t time N(t) ··t atom will decay, 
therefore the number of the radioactive atoms will be reduced by this value.  
Mathematically:   ttNN   .  

This equation can be rewritten as:   t
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The so called exponential decay law can easily be derived from this equation 
if we perform the 0t limes, and then integrate both sides of the equation: 
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 . After performing the integration we get: 

   0lnln 0  tNtN  . 

This can be rewritten as: 
 

t
N

tN
 

0

ln , from where we get: 
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This is the exponential decay law.  
 

Note: This gives only the expected value of the number of 
radioactive atoms in function of the time! In the actual cases there 
are some deviations from this, since – as we said – the decays are 
governed by statistical laws. It is also obvious from the (1) equation, 

that if 0t , then naturally also   0


tN
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should hold. However, 

since N can only be integer (since „fractional atom” cannot exist), 
therefore the limes is meaningful only for very large N(t)! 
Radioactive materials used in everyday life generally met the 

criterion   0


tN

N
, because of the very large value of N(t).  

 
 



In the program we simulate the decay of 2482 radioactive „nuclei”. The 
initial nuclei are of red colour, the resulting daughter nuclei are blue. The 
simulation does NOT use the exponential decay law to calculate the 
number of nuclei in the next second, but it determines for every nucleus if it 
survives or decays the next step, based on generated random numbers.  
 
The exponential decay law – as expectation value – will be shown (focus 
only on the number of „red” atoms, and the curve representing it). The 
statistical deviations from the pure exponential can be well observed after a 
sufficiently long time, when the number of the remaining particles gets 
small.  
 
Half-life 
 
The half-life is the time during which the half of the nuclei in a radioactive 
substance will decay. Since the radioactive decay is a statistical process, 
this can be understood also only as an expectation value. The half of the 
number of atoms in a radioactive sample decay approximately during a 
half-life, but there can be some statistical fluctuations in particular cases. 
However, for very large number of atoms these statistical fluctuations will 
be negligible as compared to the number of atoms, and the actual half-life 
gets really close to the expectation value.  
 
The T half-life can be deduced from the (2) formula, since according to the 

definition  
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Substituting this in the equation we get: TeN
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follows that: 
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Advice: This can be easily „checked” in the simulation: set  = 0.01 for the 
decay constant, and observe the time when the number of the initial (red) 
radioactive atoms is halved (i.e. will be about 1241). You will get a value 
around 70 s.  
 
Activity 
 
The activity of a radioactive sample is the number of decays per unit time. 
The unit of the activity is the becquerel. It is named after Henri Becquerel 
French physicist, who discovered the radioactivity in 1896.   
 

1 Bq = 1 decay/s.  
 
The Bq is a very small unit! In the practice one uses its multiples:   
1 kBq  = 1000 Bq,  1 MBq = 106 Bq, 1 GBq = 109 Bq. etc.  
 



The activity can be expressed using the exponential decay law, since it 

follows from the definition that the activity is  
dt
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     tN
T

tNta
2ln

 .       (3) 

 
This is important, because it creates a simple relationship between the 
activity and the half-life (or the decay constant) and the number of 
radioactive nuclei. Knowing any two of them, the third can be easily 
determined. 
 
Decay chain 
 
Often happens in Nature that a radioactive element decays to another 
element that is itself radioactive. Thus, the „daughter” decays further and its 
daughter may decay too, and so on, until we reach an element that is 
stable at the end of the chain. Such a series of radioactive elements is 
called radioactive decay chain or radioactive series.  
 
For example, there are 19 different isotopes in the radioactive decay chain 
of the 238U, until the series ends at the 206Pb stable isotope. 
 
The simulation shows the temporal development of a decay chain – 
consisting of 5 members –, where the 5th member is a stable isotope (its 
decay constant is zero), and the decay constants of the first four elements 
can be set. The screen refreshes in every second. In the initial state there 
are 2482 atoms from the first element. The 5 elements of the decay chain 
are represented by different colours: red =>blue=>green=>brown=>purple.  
 
Theoretical description 
 
For the sake of simplicity we treat now only a radioactive decay chain 
consisting of 3 elements: the first two are radioactive, and the third is stable. 
We denote the number of atoms at a certain time t by      tNtNtN 321 ,,  

respectively, and by 21,  the decay constants of the first two elements. 
The following system of differential equations describes the temporal 
behaviour of the number of atoms for the different isotopes:  
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The first equation is already familiar: it describes the decay of the first 
element with 1 decay constant. Its solution can be written down (we saw it 



earlier):   t
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. Here N0 is the initial number of atoms of the „1” 

material.  
 
The second equation is a bit more complicated. The first term on the right 
hand side is also clear: it describes that the “2” material is also radioactive 
and it decays with a decay constant of 2. The second term on the right 
hand side describes the fact that the “2” material is not only decaying but it 
is also created from the „1” material. During unit time as many “2” atoms 
are created, as are decaying from the “1” material!  
 
Having understood this, the meaning of the third equation should be 
obvious. The „3” material is not decaying (therefore the negative term is 
missing from the right hand side), it is only created from the „2” material.  
 
Before solving this system of equations, we have to fix the initial conditions. 
We choose the following initial conditions:       00   ,00   ,0 3201  NNNN . 

Since we know N1(t) from the solution of the first equation, we can 
substitute it into the second equation and we get:  

  t
eNtN

dt

dN  1
0122

2  .  

Since N0 is a constant, therefore in this equation only the N2(t) function is 
unknown, therefore this is an inhomogeneous linear differential equation of 
first order. Its solution can be achieved using well-known mathematical 
methods. The solution satisfying the   002 N  initial condition is the 
following:  
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This can be rewritten as:  
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Note: This solution is valid only if 12   .If   12 , then the solution is:  

   tNttN 12   .  

 
Transient radioactive equilibrium 
A special case of the (5) equation is the 12  , when the daughter nucleus 
decays faster than its parent. Then the exponential is negative, therefore 
after a sufficiently long period of time the exponential expression becomes 
much less than one and it can be neglected. We get:  

 
  constant.

12

1

1

2 






tN

tN
      (6) 

With other words, the ratio of the number of atoms (concentrations) of the 
members in the radioactive series becomes a constant, and does not 



depend on the time anymore. This is called transient radioactive 
equilibrium.  

Advice: The transient radioactive equilibrium can be well observed in the 
simulation, if we choose for the decay constants 12 2  (for example 

07.01   and 14.02  ). Based on the above equation it is to be expected 

that    tNtN 12   after the transient equilibrium settles. After a certain time 
the red and the blue curves will really go close together – except the 
statistical fluctuations.  

The transient equilibrium can also be expressed using the activities. 
Remember, that    tNta  . The ratio above can be rewritten: 
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(Please note that the nominator in the ratio on the right hand side differs 
from the one in the (6) equation!!)  
 
Secular radioactive equilibrium 
An even more specific case of the (5) equation is if 12  . In this case 
the condition for the transient equilibrium is obviously fulfilled, therefore the 
(6) equation is valid. However, it can be simplified even more, since now 
the 1 can be neglected in the denominator as compared to 2 , so we get:  
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. This can be rewritten as:    tNtN 2211  . Remembering the 

notion of the activity this can also be expressed as:    tata 21   . 
This is called secular equilibrium.  

It is easy to see, that this is true also for a radioactive decay chain with 
many members, if the decay constant of the very first member is much 
smaller than any of the following members of the chain.  

In secular equilibrium the activities of the members in a radioactive 
decay chain are all equal!   

 
     tatata k ...21       (7) 

 
Advice: Also the secular equilibrium can be observed using this simulation.  
Let us set the decay constant of the first member much lower than all the 
others (for example 0.002 for the first, and 0.1 for all the others). After 
sufficiently long time it can be seen that the curves of all members (except 
the first) get close together (within the range of the statistical fluctuations), 
and they are approximately 50 times lower than that of the first member of 
the series.   

 


