
 

National Leo Szilárd Physics Competition 2024 

Computer simulation task 

Theoretical introduction  

Measurement of the spectrum of beta-radiation with Wien filter 

It is known that during the beta decay of atomic nuclei, 

the emitted electron and antineutrino "share" the total 

energy released during the decay. For this reason, the 

energy of the emitted electrons can take any value 

from zero to a maximum energy (E0). Due to the 

method of this “sharing”, electrons of different ener-

gies come with different frequencies.  

Note: Also the nucleus takes part in this „sharing” and gets some 

momentum, but its effect on he energy is negligible, because the 

nuclear mass is much larger than that of the other two particles. 
 

The energy spectrum of electrons shows the frequency distribution of the electrons in function of their 

kinetic energy. Such a distribution is presented in the figure above. In this simulation, the task will be 

to measure such a spectrum and determine the maximum energy (E0) as accurately as possible. 

The simplest, of course, is if we have a detector that would immediately measure the energy of the 

electrons and could produce a histogram based on the numbers of electrons of different energies dur-

ing the measurement time. Such spectroscopes (e.g. based on semiconductor detectors) do exist. In 

this simulation, however, we are trying to determine the energy spectrum of the radioactive sample 

with a really simple device, based on electromagnetic deflection of the particles – the Wien filter. 

The spectrum and its measurement 

Before we get down to the specific task, it's worth better understanding the meaning of the spectrum! 

When we measure the distribution of particles according to energy, the hit number of our detector is 

determined by the quantity ( )0
N N f E E∆ = ⋅ ⋅ ∆ , where 

0
N  is the number of all particles that en-

tered the measuring device during the measurement time, ( )f E  is the shape of the spectrum, and 

E∆  is the "energy window" into which the particles fall that are "selected" by our measuring device. 

. If the energy window is very narrow, then it has to be measured for a long time, since only very few 

particles enter it ( N∆ will be small). With a larger E∆ one, however, the energy resolution of our 

equipment will be worse. Therefore, you usually have to make a reasonable compromise when choos-

ing E∆ . Based on this, the spectrum can be measured based on the following simple relationship: 

( )
0

1 N
f E

N E

∆= ⋅
∆

        (1) 

This way we also understand why [1/energy] is the unit for the vertical axis of the above spectrum. The 

important experience that can be drawn from this connection is that it is not enough to measure the 

N∆ number of hits, but also the E∆ size of the "energy window" must be known!    

The “end” of the spectrum, determination of the E0  decay energy 

It can be seen from the shape of the example spectrum above that the exact experimental determina-

tion of the decay energy is not easy, because the function "smoothes" into the horizontal axis around 

the end, and this makes difficult the exact determination of the ending point. This difficulty is solved 

by the Fermi-Kurie plot, which was introduced by E. Fermi Italian, and F.N.D. Kurie American physicists. 

This plot is based on the "linearization" of the beta spectrum, which can be done using the theory of 



beta decay developed by E. Fermi. (If you are interested in the specific implementation of this, you can 

find it in the Appendix.) 

Therefore ( ) ( )0
konst

m
f E E E= ⋅ − . The advan-

tage of this transformation is that the linearized 

( )m
f E  is a linear function of the energy (at least 

for the so-called "allowed" type beta decays, 

around the 
0

E decay energy). Therefore, when 

plotting this function, the straight line intersects 

the horizontal axis exactly at 
0

E , and thus enables 

a much more precise determination of the 
0

E de-

cay energy (see figure). During the competition, a 

pre-programmed EXCEL table will help to create 

the ( )m
f E data series (the linearization) from the 

measured data ( )f E . 
 

The operation of the Wien-filter 

The Wien filter applies mutually perpendicular, homogeneous electric and magnetic fields. In the op-

timal case, these fields are even perpendicular to the velocity of the incoming charged particles (elec-

trons in our case). Therefore, an ( )q
�
E electrostatic force and a ( )q  × v B

��
magnetic Lorentz force act 

on the particles. Here, q is the charge of the particle (negative elementary charge in the case of elec-

trons), v
�

  is the speed of the particles, 
�
E  is the electric field strength, and B

�
is the magnetic field. 

These last three are vector quantities. (The 
�
E notation is used for electric field strength to distinguish 

it from the E energy.) 

With appropriate choice of the electric and magnetic field strengths one can achieve 

0q q  − × = v B
� ��
E ,  

i.e the resulting force acting on the particle will be zero. The condition for this (in addition to the or-

thogonality of the field strengths and the velocity) is the following:  

B
=v E

 .  

(Here, the quantities on the right are the absolute values of the field strengths.)  

This means that such a device can sort and "filter" incoming particles based on their speed. If, there-

fore, many particles of different velocities enter into the device through a very small hole, and exit the 

Wien-filter and enter into the detector through a very small hole exactly opposite the entrance, then 

only those with exactly the above speed will be detected, since only they will move in a straight line. 

Particles with different speeds will be deflected and they will hit somewhere in the wall of the device. 

Of course, in order to determine the velocities with infinite precision, the entry and exit slits should be 

infinitesimally small - which is not feasible from a practical point of view. With slits of finite size, there 

will always be a small ( ), + ∆v v v velocity-interval in which particles fall through the filter. This interval 

will also determine the E∆ "energy window" of the filter. 

  

  



Appendix 

How to "linearize" the spectrum:  

Let us form the following expression from the "measured" ( )f E spectrum:    

( ) ( )
( ) ( ) ( ) ( )
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2 2 2

,
m

f E
f E

F Z E E mc E mc mc

 
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 . 

Here m is the rest-mass of the electron, Z is the atomic number of the daughter nucleus (after the 

decay) and ( ),F Z E is the so-called Fermi-function.  

The Fermi-function: ( )
2

2
,

1
F Z E

e πη
πη

−≅
−

, where
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.   

Based on Fermi's theory, it can be proven that for the so-called "allowed" type beta decays 

( ) ( )0
konst

m
f E E E= ⋅ −  in quite a large region around the decay energy. 

Note that the dimensionless quantity in parentheses in the formula of η  is the fine structure constant 

usually denoted by α, which is characteristic of the "strength" of the electromagnetic interaction: 
2

0
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4 137

e
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α
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ℏ
.  

If we also notice that in the above formula

2

2

1

( 2 )

E mc c

E E mc β
+ = ≡
+ v

, where v is the speed of the 

electron, then the formula can easily be memorized: 
137

Z
Z

αη
β β

= ≈ .  

 

 

 

 


