

3rd-7th July 2017, Dublin City University, Dublin, Ireland

BEATA JAROSIEVITZ DR. PHD.

COLLEGE PROFESSOR

DENNIS GABOR COLLEGE

Institute of Basic and Technical Sciences, Budapest, Hungary

E-mail: jarosievitz@gdf.hu

- 1. Introduction
- 2. Questions
- 3. Hypothesis
- 4. Participants
- 5. Methods
- 6. Activities, resources
- 7. Summary/Conclusions
- 8. References

TABLE OF CONTENTS

1. Introduction

"Kids don't like physics and maths"

Young people "see STEM as a career dead-end" Friday, 17 March 2017

Source:

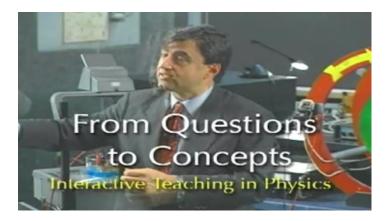
http://www.telegraph.co.uk/finance/jobs/12140410/Kids-dont-like-physics-and-maths-study-finds-out-why.html

- **1. Introduction**
- the popularity of "physics" has decreased worldwide

(OECD, 2000, 2001, 2005)

- the traditional physics classes are not good enough for attracting the students' focus to the lectures
- students have at least one of the digital devices (tablet, smart phone), but do not use them for study (*Jarosievitz*, 2009)

Beáta Jarosievitz Dr.; E-mail: jarosievitz@gdf.hu GIREP-ICPE-EPEC 2017 conference, Dublin 3rd - 7thJuly, Ireland


Newton's cradle

1. Introduction

Key question: "Are we teaching the right thing?"

Source: Understanding or memorization by **Eric Mazur**, in Conference on the Introductory Physics Course, Ed. Jack Wilson, pp. 113-124 (Wiley, New York, 1997). CRLF

<u>Source</u>

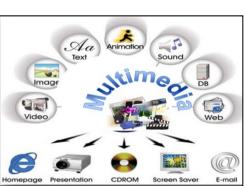
1. Introduction

• we should act immediately to change students' attitude

(Richard, 2016)

Action plan

• **physics** classes should be made more



- 2. Questions What can we do
- We should use:
- ICT
- Multimedia

good methods

- interactive teaching activities and resources (e-learning content)
- m-learning devices (BYOD)

(*Jarosievitz*, 2016, 2017)

3. Hypothesis

- □ interactive activities, resources will improve students' core competencies,
- □ colourful classes **rise up the lectures attendances**,
- **using mobile devices make** the physics education **more effective**
- □ students will **become more motivated**.

4. Participants
Students of: *BSc in Computer (IT) Engineering
*BA in Business Administration and Management

from DGC

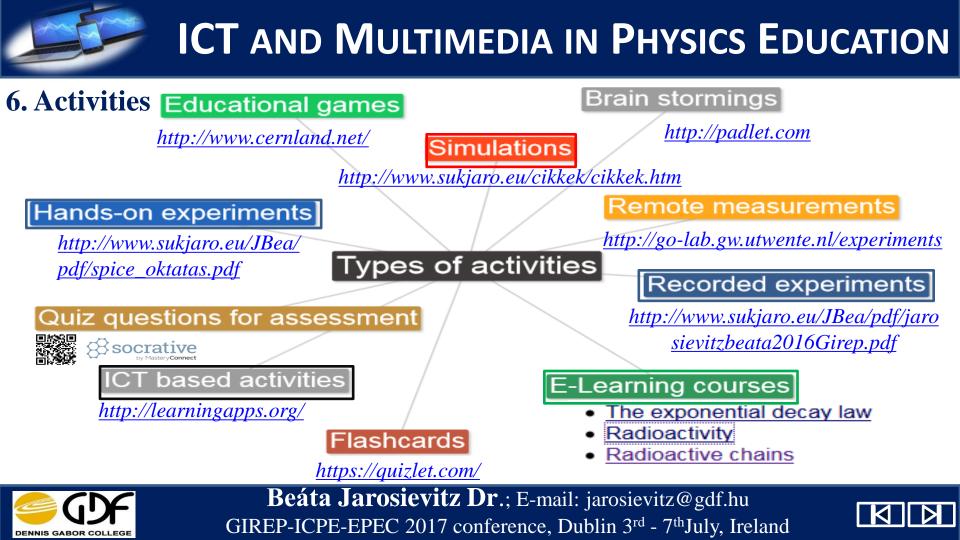
- In the **first year** of BSc studies **all students study the same modules.**
- Credits: 5 (first year, II. semester)

Written exam

- Full training education (FT) L (lecture): 30 hours, S (seminar): 15 hours
- Distance training education (DT): L (lecture): 6 hours, S (seminar): 3 hours

Course description: Mechanics; Thermodynamics; Optics; Nuclear Physics

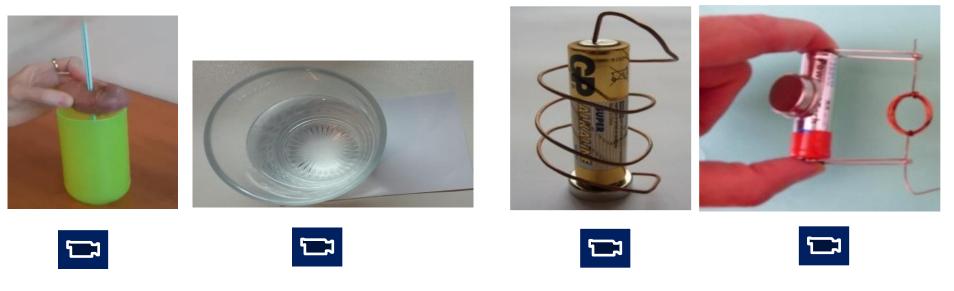
5. Methods: for using ICT in Physics Education Lecture Method


• used for example for introduction of each chapter of physics

Cooperative method (Jigsaw)

• used for group-work activity (experiments' set-up), assessment collaborative learning

Inquiry-based learning



6. Activities

Hands-on experiments

Learning by doing

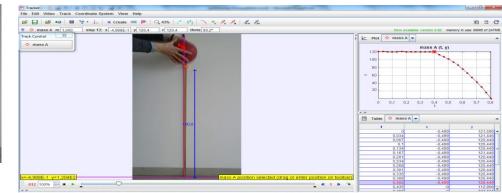
Newtons' law

Electric motors

6. Activities

Recorded experiments

Chain reaction


6. Activities

Recorded experiments

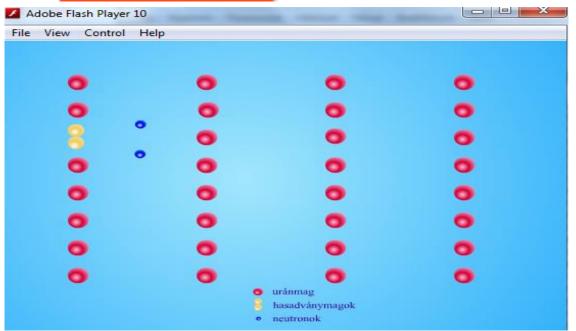
- Measurements (BYOD)
- **Necessary materials :**
- Handball (any medium sized, well visible ball)

Tracker

- ruler
- smart phone or tablet
- laptop
- free program: (<u>http://physlets.org/tracker</u>)

Source: <u>http://moodle.scientix.eu/course/view.php?id=179</u> Author: Carlos Cunha

6. Activities [Recorded experiments] $y = a \cdot x^2 + b \cdot x + c$									
0		$a = \frac{g}{2}$	$\Rightarrow g = 2 \cdot c$	$a \qquad y = \frac{g}{2}$	$\cdot \cdot t^2 + v_0 \cdot t + y_0$				
Measurement results Felvett videófájl neve	a	g (m/s ²)	$x_{\dot{a}} = \frac{\sum x_n}{n}$	(x) ²	δx				
20160311_123159.mp3	4,630	9,260	9,33		1%				
20160311_123217.mp3	4,620	9,240		0,07466619					
20160311_123235.mp4	4,720	9,440							
20160311_123253.mp4	4,670	9,340							
20160311_123316.mp4	4,691	9,382							
Átlag		9,33							
	$\chi_{a} = -$	$\frac{\sum x_n}{n}$ (Δx	$x)^2 = \frac{1}{n-1}\sum_{i}^{n-1}$	$\sum_{i=1}^{n} (x - x_{\dot{a}})^2$	$\delta x = \left(\frac{\Delta x}{\chi_a}\right) \cdot 100$				

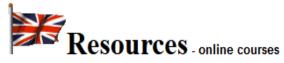


6. Activities

Simulations

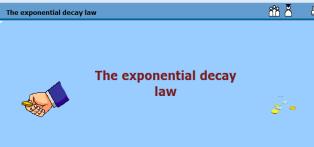
Simulated chain reaction (<u>see more</u>)

Neutrons



6. Activities

E-Learning courses



http://www.sukjaro.eu/cikkek/exp_engl/home/index.htm

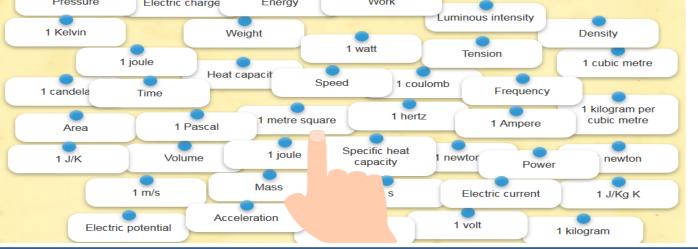
- · The exponential decay law
- Radioactivity

DENNIS GABOR COLL

Radioactive chains

Aim: to teach some of the fundamental

- properties of the radioactivity
 - the random behaviour,
 - the exponential decay law,
 - notions of half-life,
 - decay constant and activity.



6. Activities

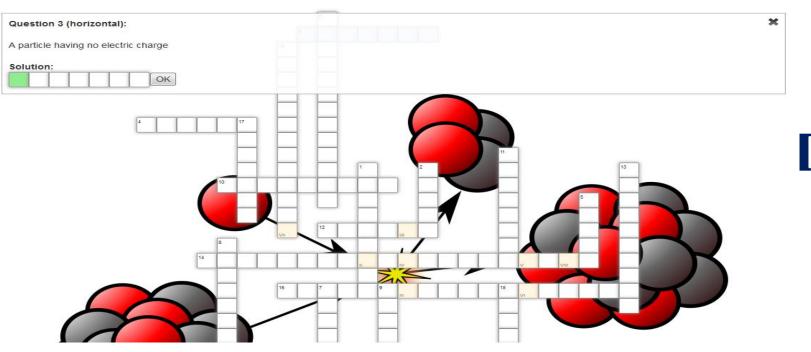
Learnin	gApps.org	Physical quant	ity and units in the Int	ernational System of Units J 👘 👻	
Search in Apps	Browse Apps	🖋 Create App			🛔 Login
	nd units in the Intern the International System of Unit		of Units		2018-12-21

ICT based activities

6. Activities

ICT based activities

Newton had shown that if you shine		ito a prism it breaks it apart int	o its different	. William Herschel found out that each color	
has a different	and that the	temperature is the one n	neasured with the	on the side of the red light. He	
discovered	rays. If we put electromagr	to high frequencies and at the same time from			
high to low	. As we increase	we also increase the a	amount of	that the waves have. So which one wo	ould you
rather be exposed to?	The ones with high	, really really low	and low	. High energy waves can	cells
or even cause damag	temselves.				



6. Activities

ICT based activities

6. Activities

Quiz questions for assessment

Quiz name: Teszt4_aprilis19 Question with Most Correct Answers: #4 Question with Fewest Correct Answers: #6 Date: 04/26/2016 Total Questions: 10

Egyik autó kötéllel vontatja a másikat. Óvatos indulással a vontatott jármű akármilyen sebességre gyorsítható. Hirtelen indulásnál a kötél mégis elszakad. Miért? (A súrlódástól tekintsünk el.)

3/19 5/19 7/19

2/19

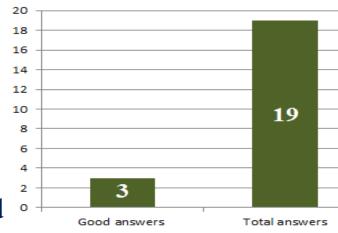
D

1.

- A vontatott kocsi csak kis gyorsulással indulhat, mert viszonylag nagy a tömege.
 - Adott impulzusváltozást rövidebb idő alatt csak nagyobb erő képes létrehozni.
- A vontatott autó adott sebességváltozásához hosszabb idő kell.
- A kötél szakítószilárdsága függ a vontatás sebességétől.

6. Activities

Quiz questions for assessment


Which statement is true for a perfectly inelastic

collision?

- a) only the momentum is conserved
- b) only the energy is conserved
- c) both the momentum and the energy are conserved
- d) none of the momentum and the energy is conserved

- 7. Conclusions very positive feedback from students: personal interviewsStudents who had joined the activities:
- took part with **enthusiasm**,
- **enjoyed "learning by doing"** (experiments, use of their smart phones and tablets)
- **cooperated with their** neighbours "Turn To Your Neighbours" (*Mazur*, 2014; *Le Roux*, 2013),
- used their own devices with expertise,
- improved their core competencies

"...ICT will affect the complete learning process today

and in the future."

(Yves Punie, Dieter Zinnbauer and Marcelino Cabrera, 2012)

References

Future plans:

- to promote physics,
- to change students' negative attitude to physics!

Thank you for your attention!

